严彬元, 王皓然, 周泽元. 基于卷积神经网络的电力通信网络攻击源定位方法[J]. 电力大数据, 2022, 25(3): 26-33. DOI: 10.19317/j.cnki.1008-083x.2022.03.004
引用本文: 严彬元, 王皓然, 周泽元. 基于卷积神经网络的电力通信网络攻击源定位方法[J]. 电力大数据, 2022, 25(3): 26-33. DOI: 10.19317/j.cnki.1008-083x.2022.03.004
YAN Bin-yuan, WANG Hao-ran, ZHOU Ze-yuan. Location Method of Attack Source in Power Communication Network Based on Convolutional Neural Network[J]. Power Systems and Big Data, 2022, 25(3): 26-33. DOI: 10.19317/j.cnki.1008-083x.2022.03.004
Citation: YAN Bin-yuan, WANG Hao-ran, ZHOU Ze-yuan. Location Method of Attack Source in Power Communication Network Based on Convolutional Neural Network[J]. Power Systems and Big Data, 2022, 25(3): 26-33. DOI: 10.19317/j.cnki.1008-083x.2022.03.004

基于卷积神经网络的电力通信网络攻击源定位方法

Location Method of Attack Source in Power Communication Network Based on Convolutional Neural Network

  • 摘要: 为了提高电力通信网络攻击源定位准确性和方法收敛速度,本文提出基于卷积神经网络的电力通信网络攻击源定位方法。方法采用一阶空间回归模型分析电力通信网络目标设备的空间结构特征,采用振动波模型确定攻击源大尺度时空变化趋势,采用一阶自回归模型确定小尺度时空变化趋势,并以此为基础,利用Stirling插值公式导出电力通信网络攻击源模型状态方程,对电力通信网络攻击源聚合处理。采用双人攻防博弈模型计算网络攻击和网络防御策略效用,判断攻击和防御效用大小,评估电力通信网络安全性;确定电力通信网络熵变率阈值,计算网络熵变率、相对熵值和网络数据包基线概率分布,设计电力通信网络攻击检测步骤,检测网络攻击;根据卷积神经网络结构,选择网络激活函数,通过网络正向和反向传播,划分网络数据类别,确定电力通信网络拓扑结构,选择网络攻击者和被攻击节点,定位攻击源定位。实验结果表明:方法可有效提升攻击源的定位精度。

     

    Abstract: In order to improve the accuracy and convergence speed of attack source location in power communication network, an attack source location method based on convolutional neural network is proposed.The first-order spatial regression model is used to analyze the spatial structure characteristics of the target equipment of the power communication network, the vibration wave model is used to determine the large-scale spatio-temporal change trend of the attack source, and the first-order autoregressive model is used to determine the small-scale spatio-temporal change trend. On this basis, the state equation of the power communication network attack source model is derived by using stirling interpolation formula, and the power communication network attack sources are aggregated. The two player attack defense game model is used to calculate the utility of network attack and network defense strategy, judge the utility of attack and defense, and evaluate the security of power communication network; and determine the entropy change rate threshold of power communication network, calculate the network entropy change rate, relative entropy and network packet baseline probability distribution, and design the power communication network attack detection steps to detect network attacks. According to the convolution neural network structure, the network activation function is selected. Through the network forward and back propagation, the network data categories are divided, the power communication network topology is determined, the network attacker and the attacked node are selected, and the attack source is located. Experimental results show that the proposed method can effectively improve the location accuracy of attack sources.

     

/

返回文章
返回