基于电力网络监测数据的大数据安全分析平台关键技术研究
Research on key technologyof big data security analysis platform based on electric power network monitoring data
-
摘要: 针对大数据环境下,电力网络监测数据流量大、变化快,电网通信异常链路判断可靠性差,序列异常检测结果失真的问题,本文提出了一种基于电力网络监测数据的大数据安全分析平台关键技术研究。通过电力网络通信异常链路判断方法设计,多维熵序列异常检测方法设计对平台关键技术进行分析,采用多维熵序列异常检测方法对异常链路上采集的网络流量数据的分布特征进行度量,获得电力网络流量监测数据在各个维度上的熵值序列,利用支持向量机对网络流量数据各个维度上的熵值序列进行分类,完成基于电力网络监测数据的大数据安全分析平台技术的总体设计。对其进行仿真实验,实验结果表明,所提方法对于大规模电网数据安全分析具有较高的加速比,在帮助电力网络分析人员感知电力网络异常、发现恶意攻击等方面有较大的优势。Abstract: In the big data environment, the power network monitoring data flow is large and changes quickly, the reliability of the abnormal link judgment of the power grid communication is poor, and the sequence anomaly detection results are distorted. This paper proposes a big data security analysis based on the power network monitoring data research on key technologies of the platform. Through the design of the power network communication abnormal link judgment method, the multi-dimensional entropy sequence anomaly detection method design analyzes the key technologies of the platform.The multi-dimensional entropy sequence anomaly detection method is used to measure the distribution characteristics of the network flow data collected on the abnormal link, and the entropy value sequence of the power network flow monitoring data in each dimension is obtained, and the support vector machine is used to measure the network flow data in each dimension.