于艾清, 濮梦燕, 王育飞, 薛花, 金彪. 基于改进鲸鱼算法的分布式电源规划方法[J]. 电测与仪表, 2024, 61(8): 63-69. DOI: 10.19753/j.issn1001-1390.2024.08.008
引用本文: 于艾清, 濮梦燕, 王育飞, 薛花, 金彪. 基于改进鲸鱼算法的分布式电源规划方法[J]. 电测与仪表, 2024, 61(8): 63-69. DOI: 10.19753/j.issn1001-1390.2024.08.008
YU Ai-qing, PU Meng-yan, WANG Yu-fei, XUE Hua, JIN Biao. Planning method for distributed generation based on improved WOA[J]. Electrical Measurement & Instrumentation, 2024, 61(8): 63-69. DOI: 10.19753/j.issn1001-1390.2024.08.008
Citation: YU Ai-qing, PU Meng-yan, WANG Yu-fei, XUE Hua, JIN Biao. Planning method for distributed generation based on improved WOA[J]. Electrical Measurement & Instrumentation, 2024, 61(8): 63-69. DOI: 10.19753/j.issn1001-1390.2024.08.008

基于改进鲸鱼算法的分布式电源规划方法

Planning method for distributed generation based on improved WOA

  • 摘要: 随着分布式电源并入配电网的比例不断增大,为了提高系统电压稳定性和经济性,文中提出了一种基于改进鲸鱼算法的分布式电源规划方法。利用拉丁超立方采样和改进的K-means聚类算法处理风、光和负荷的不确定性问题。提出一种负荷加权电压稳定指标来量化网络电压稳定性,再结合年综合费用建立分布式电源多目标规划模型。针对现有WOA算法在解决复杂规划问题方面的不足,引入对数权重距离控制因子和Nelder-Mead方法加快收敛速度,融合Pareto存档进化策略提高种群的多样性,在搜索中应用反向学习策略防止算法陷到局部最优。在IEEE 33节点系统上进行了仿真分析,结果表明所提模型与算法可行有效。

     

    Abstract: As the proportion of distributed generation connected to the distribution network continues to increase, in order to improve the voltage stability and economy of the system, this paper proposes a planning method for distributed generation based on the improved whale optimization algorithm(WOA). Firstly, the Latin hypercube sampling and the improved K-means clustering algorithm are used to deal with the uncertainties of wind, light and load. Secondly, a load-weighted voltage stability index is proposed to quantify the network voltage stability, and then, combining with the annual comprehensive cost, a distributed power generation multi-objective planning model is established. Finally, in view of the shortcomings of the existing WOA algorithm in solving complex planning problems, the logarithmic weight distance control factor and the Nelder-Mead method are introduced to accelerate the convergence speed, and the Pareto archive evolution strategy is integrated to increase the diversity of the population. The opposition-based learning strategy is used in the searching process to prevent stuck into local minima. The simulation analysis on the IEEE 33-node system shows the effectiveness and feasibility of the proposed model and algorithm.

     

/

返回文章
返回