徐云武, 李红斌, 张传计. 基于优选建模和深度置信网络的电压互感器误差定量评估方法[J]. 电测与仪表, 2024, 61(8): 55-62,77. DOI: 10.19753/j.issn1001-1390.2024.08.007
引用本文: 徐云武, 李红斌, 张传计. 基于优选建模和深度置信网络的电压互感器误差定量评估方法[J]. 电测与仪表, 2024, 61(8): 55-62,77. DOI: 10.19753/j.issn1001-1390.2024.08.007
XU Yun-wu, LI Hong-bin, ZHANG Chuan-ji. Error quantitative evaluation method of potential transformer based on optimal modeling and deep belief network[J]. Electrical Measurement & Instrumentation, 2024, 61(8): 55-62,77. DOI: 10.19753/j.issn1001-1390.2024.08.007
Citation: XU Yun-wu, LI Hong-bin, ZHANG Chuan-ji. Error quantitative evaluation method of potential transformer based on optimal modeling and deep belief network[J]. Electrical Measurement & Instrumentation, 2024, 61(8): 55-62,77. DOI: 10.19753/j.issn1001-1390.2024.08.007

基于优选建模和深度置信网络的电压互感器误差定量评估方法

Error quantitative evaluation method of potential transformer based on optimal modeling and deep belief network

  • 摘要: 电压互感器(potential transformer, PT)是电力系统中电压测量的关键设备,对PT的计量误差进行在线评估将有助于维护电能贸易结算的公平公正,其中基于数据驱动的PT在线评估方法因其评估性能优越而具有良好的工程应用前景,但存在着未考虑建模数据中是否含有异常数据以及无法定量评估等问题。为此,文中提出了一种基于优选建模和深度置信网络的定量评估方法,该方法通过无监督聚类技术确定理想的建模数据集,并利用深度置信网络进行训练得到PT定量评估模型,进而对PT实时输出信号进行分析实现误差定量评估。实验表明,该方法可有效检测出建模数据中的异常数据,且准确监测0.2级PT的计量误差状态,实现在运PT计量性能的准确评估。

     

    Abstract: The potential transformer(PT) is the key device for voltage measurement in power system. Online evaluation of the measurement error of PT will help maintain the fairness and justice of electricity trade settlement. Among them, the data-driven online evaluation method has good engineering application prospects because of its superior evaluation performance. However, there are problems such as failure to consider whether the modeling data contains abnormal data and the inability to quantitatively evaluate. To this end, this paper proposes a quantitative evaluation method based on optimal modeling and deep belief network(DBN). This method adopts unsupervised clustering technology to determine the ideal modeling data set, and utilizes the deep belief network for training to obtain the PT quantitative evaluation model, and then, analyzes the real-time output signal of PT to achieve error quantitative evaluation. Experiments show that this method can effectively detect the abnormal data in the modeling data, and accurately monitor the measurement error status of the 0.2-level PT, and realize the accurate evaluation of the measurement performance of in-service PT.

     

/

返回文章
返回