徐宏伟, 丛中笑, 阳晓路, 周忠明, 陈寅生, 林海军. 基于整体退火遗传小波网络的计量终端可靠性预测[J]. 电测与仪表, 2024, 61(2): 179-184. DOI: 10.19753/j.issn1001-1390.2024.02.026
引用本文: 徐宏伟, 丛中笑, 阳晓路, 周忠明, 陈寅生, 林海军. 基于整体退火遗传小波网络的计量终端可靠性预测[J]. 电测与仪表, 2024, 61(2): 179-184. DOI: 10.19753/j.issn1001-1390.2024.02.026
XU Hong-wei, CONG Zhong-xiao, YANG Xiao-lu, ZHOU Zhong-ming, CHEN Yin-sheng, LIN Hai-jun. Reliability prediction of metering terminal based on whole annealing genetic algorithm wavelet neural network[J]. Electrical Measurement & Instrumentation, 2024, 61(2): 179-184. DOI: 10.19753/j.issn1001-1390.2024.02.026
Citation: XU Hong-wei, CONG Zhong-xiao, YANG Xiao-lu, ZHOU Zhong-ming, CHEN Yin-sheng, LIN Hai-jun. Reliability prediction of metering terminal based on whole annealing genetic algorithm wavelet neural network[J]. Electrical Measurement & Instrumentation, 2024, 61(2): 179-184. DOI: 10.19753/j.issn1001-1390.2024.02.026

基于整体退火遗传小波网络的计量终端可靠性预测

Reliability prediction of metering terminal based on whole annealing genetic algorithm wavelet neural network

  • 摘要: 为了解决小波神经网络初值敏感性及收敛稳定性问题,以提高计量终端软件可靠性预测建模的效率及准确性。文章完善了整体退火遗传算法(WAGA),并验证了其具有极强的整体收敛和全局优化能力,利用其全局寻优能力,优化小波神经网络(WNN)的参数,提出基于整体退火遗传小波神经网络(WAGA-WNN)的建模方法;用该方法建立计量终端的软件可靠性预测模型。实验结果表明,该方法可以解决小波神经网络初值敏感性及收敛稳定性难题,建立的软件可靠性预测模型效率和准确度较高。

     

    Abstract: In order to solve the problem of initial value sensitivity and convergence stability for the wavelet neural network and improve the efficiency and accuracy of the reliability predictive model for metering terminal software, the following steps are performed. The paper improves the whole annealing genetic algorithm(WAGA), and prove that it has extremely strong ability in global convergence and global optimization. Made use of its global optimization property to improve the parameters for wavelet neural network(WNN) and develop model-building method based on whole annealing genetic algorithm-wavelet neural network(WAGA-WNN). Build software reliability predictive model for metering terminal based on the proposed method. The experimental result indicates that this method can solve the problem of initial value sensitivity and convergence stability for wavelet neural network, furthermore, the software reliability predictive model has high efficiency and accuracy.

     

/

返回文章
返回