黄武枫, 郑含博, 杜齐, 杨杭. 基于Nakagami分布的风速概率分布拟合研究[J]. 电测与仪表, 2024, 61(2): 76-82. DOI: 10.19753/j.issn1001-1390.2024.02.011
引用本文: 黄武枫, 郑含博, 杜齐, 杨杭. 基于Nakagami分布的风速概率分布拟合研究[J]. 电测与仪表, 2024, 61(2): 76-82. DOI: 10.19753/j.issn1001-1390.2024.02.011
HUANG Wu-feng, ZHENG Han-bo, DU Qi, YANG Hang. Study on fitting of wind speed probability distribution based on Nakagami distribution[J]. Electrical Measurement & Instrumentation, 2024, 61(2): 76-82. DOI: 10.19753/j.issn1001-1390.2024.02.011
Citation: HUANG Wu-feng, ZHENG Han-bo, DU Qi, YANG Hang. Study on fitting of wind speed probability distribution based on Nakagami distribution[J]. Electrical Measurement & Instrumentation, 2024, 61(2): 76-82. DOI: 10.19753/j.issn1001-1390.2024.02.011

基于Nakagami分布的风速概率分布拟合研究

Study on fitting of wind speed probability distribution based on Nakagami distribution

  • 摘要: 准确拟合风速概率分布对估算潜在风场所蕴含的风能具有重要作用。引入二参数Nakagami分布对美国西部涵盖沿海、海岛和内陆的八个站点风速数据进行拟合,并对比瑞丽分布、伽马分布、威布尔分布、对数正态分布、广义极值分布以及JohnsonSB分布,使用决定系数、均方根误差、误差平方和以及Kolmogorov-Smirnov四个拟合指标进行校验。与参数较少的瑞丽分布、伽马分布、对数正态分布以及威布尔分布精度进行比较,Nakagami分布在八个站点的四个拟合指标均值中取得最优的拟合精度。与三参数的广义极值分布以及四参数JohnsonSB分布进行拟合对比,Nakagami分布在四个站点获得最优精度。根据风速数据的统计结果,当站点的平均风速低于3 m/s时,Nakagami比其它分布获得了更高的拟合精度。综合考虑Nakagami简便的计算及较高的拟合精度,其在拟合风速概率分布领域更具优势。

     

    Abstract: The accurate fitting of wind speed probability distribution plays an important role in estimating the wind energy in potential wind farms.In this study, the two parameters Nakagami distribution is introduced to fit the wind speed data of eight stations covering coastal, island and inland in the western United States, and the Rayleigh, Gamma, Weibull, lognormal, generalized extreme value and Johnson SB distribution are compared by using coefficients of determination, root mean square error, sum of squares of errors and Kolmogorov-Smirnov, and compared with fewer parameters Rayleigh, Gamma distribution, lognormal and Weibull distributions, the goodness-of-fit of Nakagami obtained the optimal fitting precision among the mean values of four fitting indices at eight stations.Compared with three parameters generalized extreme value and four parameters Johnson SB distribution, Nakagami obtained the optimal accuracy at four stations. According to the statistical results of wind speed, it was found that when the average wind speed was lower than 3m/s, Nakagami obtained the highest fitting accuracy.Considering calculation and precision, Nakagami is more suitable for fitting wind speed probability distribution.

     

/

返回文章
返回