徐毅, 吴鸣, 李广玮, 王昕扬. 基于多维缩放的日负荷曲线聚类分析[J]. 电测与仪表, 2022, 59(10): 80-86. DOI: 10.19753/j.issn1001-1390.2022.10.012
引用本文: 徐毅, 吴鸣, 李广玮, 王昕扬. 基于多维缩放的日负荷曲线聚类分析[J]. 电测与仪表, 2022, 59(10): 80-86. DOI: 10.19753/j.issn1001-1390.2022.10.012
XU Yi, WU Ming, LI Guang-wei, WANG Xin-yang. Clustering analysis of daily load curve based on multi-dimensional scaling[J]. Electrical Measurement & Instrumentation, 2022, 59(10): 80-86. DOI: 10.19753/j.issn1001-1390.2022.10.012
Citation: XU Yi, WU Ming, LI Guang-wei, WANG Xin-yang. Clustering analysis of daily load curve based on multi-dimensional scaling[J]. Electrical Measurement & Instrumentation, 2022, 59(10): 80-86. DOI: 10.19753/j.issn1001-1390.2022.10.012

基于多维缩放的日负荷曲线聚类分析

Clustering analysis of daily load curve based on multi-dimensional scaling

  • 摘要: 负荷曲线聚类在负荷预测,需求侧响应等方面有重要应用。目前负荷数据日趋海量化和多维化,需要对其进行降维处理,但现有的降维会对曲线信息造成一定程度的损失,为此提出了一种基于多维缩放(Multi-Dimensional Scaling, MDS)降维的日负荷曲线聚类方法。使用MDS算法对采集到的负荷数据进行降维处理,采用CRITIC—熵权法作为降维指标的权重配置方法,通过计及权重的修正轮廓系数选择最优类簇数,以加权欧式距离的K-means算法进行聚类。通过算例表明该方法能最大程度保留原始曲线信息,在聚类准确度和运行时间两方面均有优势。

     

    Abstract: Load curve clustering has important applications in load forecasting and demand-side response. At present, the load data is becoming more and more quantized and multi-dimensional, and it needs to be reduced in dimensionality. However, the existing dimensionality reduction will cause a certain degree of loss in the curve information. Therefore, a clustering method of daily load curve for dimension reduction based on multi-dimensional scaling(MDS) is proposed in this paper. The MDS algorithm is adopted to perform dimensionality reduction on the collected load data. The CRITIC-entropy weight method is used as the weight configuration method of the dimensionality reduction index. The optimal cluster number is selected by the weighted modified contour coefficient to weight the European Distance K-means algorithm for clustering. A numerical example shows that this method can retain the original curve information to the greatest extent, and has advantages in both clustering accuracy and running time.

     

/

返回文章
返回