刘岩, 彭鑫霞, 郑思达. 基于改进LS-SVM的短期电力负荷预测方法研究[J]. 电测与仪表, 2021, 58(5): 176-181. DOI: 10.19753/j.issn1001-1390.2021.05.026
引用本文: 刘岩, 彭鑫霞, 郑思达. 基于改进LS-SVM的短期电力负荷预测方法研究[J]. 电测与仪表, 2021, 58(5): 176-181. DOI: 10.19753/j.issn1001-1390.2021.05.026
LIU Yan, PENG Xin-xia, ZHENG Si-da. Research on short-term power load forecasting method based on improved LS-SVM[J]. Electrical Measurement & Instrumentation, 2021, 58(5): 176-181. DOI: 10.19753/j.issn1001-1390.2021.05.026
Citation: LIU Yan, PENG Xin-xia, ZHENG Si-da. Research on short-term power load forecasting method based on improved LS-SVM[J]. Electrical Measurement & Instrumentation, 2021, 58(5): 176-181. DOI: 10.19753/j.issn1001-1390.2021.05.026

基于改进LS-SVM的短期电力负荷预测方法研究

Research on short-term power load forecasting method based on improved LS-SVM

  • 摘要: 针对电力负荷随机性强、稳定性差、预测精度不理想等问题,提出了一种基于粒子群优化PSO和最小二乘支持向量机LS-SVM的短期负荷预测方法。模型的输入因子是负荷数据和气象信息等。粒子群优化算法用于实现支持向量机参数的自动优化,建立了基于粒子群优化的最小二乘支持向量机短期负荷预测模型。通过仿真验证了改进前后预测模型的准确性和有效性,结果表明,改进的预测方法具有收敛性好、预测精度高、训练速度快的优点。本研究为我国短期负荷预测方法的发展提供了参考和借鉴。

     

    Abstract: Aiming at the problems of strong randomness,poor stability and unsatisfactory forecasting accuracy of power load,a short-term power load forecasting method combining particle swarm optimization( PSO) and least squares support vector machine( LS-SVM) is proposed in this paper. The input factors of the model are load data and meteorological information. The particle swarm optimization algorithm is adopted to realize the automatic optimization of the parameter of the support vector machine,short-term load forecasting model of the least squares support vector machine based on particle swarm optimization is established. The accuracy and validity of the improved prediction model are verified by simulation,the results show that the improved prediction method brings benefits to convergence,prediction accuracy and training speed. This study provides a reference for the development of short-term load forecasting methods in China.

     

/

返回文章
返回