马纪梅, 张志耀, 张启然. 基于改进RBF神经网络的光伏组件故障诊断[J]. 电测与仪表, 2021, 58(2): 118-124. DOI: 10.19753/j.issn1001-1390.2021.02.019
引用本文: 马纪梅, 张志耀, 张启然. 基于改进RBF神经网络的光伏组件故障诊断[J]. 电测与仪表, 2021, 58(2): 118-124. DOI: 10.19753/j.issn1001-1390.2021.02.019
MA Ji-mei, ZHANG Zhi-yao, ZHANG Qi-ran. Fault diagnosis of photovoltaic modules based on improved RBF neural network[J]. Electrical Measurement & Instrumentation, 2021, 58(2): 118-124. DOI: 10.19753/j.issn1001-1390.2021.02.019
Citation: MA Ji-mei, ZHANG Zhi-yao, ZHANG Qi-ran. Fault diagnosis of photovoltaic modules based on improved RBF neural network[J]. Electrical Measurement & Instrumentation, 2021, 58(2): 118-124. DOI: 10.19753/j.issn1001-1390.2021.02.019

基于改进RBF神经网络的光伏组件故障诊断

Fault diagnosis of photovoltaic modules based on improved RBF neural network

  • 摘要: 由于光伏组件的输出特性受多种因素混合影响,对光伏组件的故障检测是一个严峻的考验。为了保证故障诊断的实时性和精确性,采用多传感器法提取短路和开路故障特征,利用电压扫描法获取不均匀光照引起的热击穿和电击穿故障的判断依据,以故障特征为判据,给出一种基于K均值聚类算法的改进RBF神经网络的光伏组件故障诊断方法,在Matlab平台中,通过该方法对光伏组件发生的故障类型与故障定位进行仿真测试,结果表明:该测试方法进行故障诊断的正确率达到96.67%,而BP神经网络的正确率只有83.33%,验证了改进RBF神经网络的故障诊断方法的精确性与有效性。

     

    Abstract: The output characteristics of photovoltaic modules are affected by many factors,so the fault detection of photovoltaic modules is a severe test.In order to ensure the real-time and accuracy of fault diagnosis,multi-sensor method is adopted to extract short-circuit and open-circuit fault features,and voltage scanning method is adopted to obtain the judgment basis of thermal breakdown and electrical breakdown caused by uneven illumination.Based on fault characteristics,an improved RBF neural network based on K-means clustering algorithm is proposed for fault diagnosis of photovoltaic module.In Matlab platform,this method is used to simulate the fault types and location of photovoltaic modules.The results show that the accuracy rate of this test method is up to 96.67%,while the accuracy rate of BP neural network is only 83.33%.It verifies the accuracy and effectiveness of the improved RBF neural network fault diagnosis method.

     

/

返回文章
返回