基于改进型RBF神经网络的VSG转动惯量自适应控制
Adaptive inertia control for VSG based on improved RBF neural network
-
摘要: 与传统同步发电机相比,虚拟同步发电机(VSG)具有参数灵活可调的优势,特别是虚拟惯量和虚拟阻尼能够对VSG稳定性产生显著影响。RBF神经网络对于连续非线性函数具有很好的逼近效果,且算法简单,学习能力强大,学习速度快,能够满足实时控制的需求。文中基于控制对象的特性,对RBF神经网络进行改进,并设计出一种全新的自适应控制策略。该策略使用改进RBF神经网络对VSG虚拟惯量J进行在线调整。在Matlab中将神经网络算法融合入控制对象建立自适应仿真模型,对所提控制策略进行仿真验证。仿真结果表明,该自适应控制策略能够有效提高虚拟同步发电机频率稳定性。Abstract: Compared to conventional synchronous generators,virtual synchronous generator(VSG) enjoys the advantage of flexible controllability.In particular,the virtual inertia and virtual damping can have a substantial impact on the stability of VSG.RBF neural network,which enjoys simple algorithm,strong ability of learning and fast learning rate,has good approximation for continuous non-linear function,which can meet the needs of real-time control.Based on the characteristics of the control object,this paper improves the RBF neural network and designs a new adaptive control strategy,which adopts the improved RBF neural network to adjust virtual inertia J of VSG online.The neural network algorithm is integrated into the control object to establish an adaptive simulation model in Matlab,and the proposed control strategy is verified by simulation.The simulation results show that the adaptive control strategy can effectively improve frequency stability of VSG.