陈柏寒, 杨威, 万文欣, 刘闯. 基于ISSA-KELM的电动汽车动力电池SOC估算[J]. 东北电力技术, 2024, 45(8): 1-5,12.
引用本文: 陈柏寒, 杨威, 万文欣, 刘闯. 基于ISSA-KELM的电动汽车动力电池SOC估算[J]. 东北电力技术, 2024, 45(8): 1-5,12.
CHEN Baihan, YANG Wei, WAN Wenxin, LIU Chuang. Estimation of SOC for Electric Vehicle Power Battery Based on ISSA-KELM[J]. Northeast Electric Power Technology, 2024, 45(8): 1-5,12.
Citation: CHEN Baihan, YANG Wei, WAN Wenxin, LIU Chuang. Estimation of SOC for Electric Vehicle Power Battery Based on ISSA-KELM[J]. Northeast Electric Power Technology, 2024, 45(8): 1-5,12.

基于ISSA-KELM的电动汽车动力电池SOC估算

Estimation of SOC for Electric Vehicle Power Battery Based on ISSA-KELM

  • 摘要: 为了提高电动汽车动力电池荷电状态(state of charge, SOC)估算结果的准确性,提出了一种基于改进麻雀算法(improved sparrow search algorithm, ISSA)优化核极限学习机(kernel extreme learning machine, KELM)的电动汽车动力电池SOC估算方法。首先,以电压、电流、温度为输入量,以电池SOC为输出量,采用Logistic混沌初始化、惯性权重非线性递减和莱维飞行等策略改进得到的ISSA算法对KELM进行优化;其次,建立了基于ISSA-KELM的电动汽车动力电池SOC估算模型;最后,采用磷酸铁锂电池充放电数据进行仿真分析,并与其他电池SOC估算方法进行对比。仿真结果表明,所提ISSA-KELM模型对测试集预测结果的最大相对误差、平均相对误差和均方根误差分别为6.232%、3.964%和0.0197,诊断精度和模型稳定性均优于其他方法,验证了所提电池SOC估算方法的有效性。

     

    Abstract: In order to improve the accuracy of SOC estimation results for the state of charge electric vehicle power batteries, a method for SOC estimation of electric vehicle power batteries based on improved sparrow search algorithm(ISSA) optimized kernel extreme learning machine(KELM) is proposed.Taking voltage, current, and temperature as inputs and battery SOC as output, the ISSA algorithm improved by using logistic chaos initialization, nonlinear decreasing inertia weight, and Levi flight strategies is used to optimize KELM.Secondly, an electric vehicle power battery SOC estimation model based on ISSA-KELM is established.Finally, simulation analysis is conducted using lithium iron phosphate battery charge and discharge data, and comparison is made with other battery SOC estimation methods.The results show that the maximum relative error, average relative error, and root mean square error of the ISSA-KELM model for predicting the test set are 6.232%,3.964%,and 0.0197 respectively.The diagnostic accuracy and model stability are better than other methods, verifying the effectiveness of the proposed battery SOC estimation method.

     

/

返回文章
返回