张跃, 王智远, 赵理山, 朱世松, 芦碧波. 基于YOLOv5的安全帽智能检测[J]. 东北电力技术, 2022, 43(8): 50-52,56.
引用本文: 张跃, 王智远, 赵理山, 朱世松, 芦碧波. 基于YOLOv5的安全帽智能检测[J]. 东北电力技术, 2022, 43(8): 50-52,56.
ZHANG Yue, WANG Zhiyuan, ZHAO Lishan, ZHU Shisong, LU Bibo. Intelligent Detection of Safety Helmet Based on YOLOv5[J]. Northeast Electric Power Technology, 2022, 43(8): 50-52,56.
Citation: ZHANG Yue, WANG Zhiyuan, ZHAO Lishan, ZHU Shisong, LU Bibo. Intelligent Detection of Safety Helmet Based on YOLOv5[J]. Northeast Electric Power Technology, 2022, 43(8): 50-52,56.

基于YOLOv5的安全帽智能检测

Intelligent Detection of Safety Helmet Based on YOLOv5

  • 摘要: 安全帽作为防止人员头部受到伤害的防护用品,在进入电厂等高危场所时,要求必须佩戴。在实际工作中,不佩戴安全帽进入作业现场的情况时有发生。为解决这一问题,提出了一种基于安全帽的智能化检测技术。该技术使用YOLOv5算法对数据进行训练,并采用YOLOv5系列中网络深度和宽度最小的YOLOv5s模型。试验结果表明,在自采数据集中训练并检测,平均精度达95.4%,能够满足电厂等高危场所对人员不按规定佩戴安全帽的实时监测要求。

     

    Abstract: As a protective equipment to prevent head injuries,safety helmets are required to be worn when entering high-risk places such as power plants. In actual work,it happens from time to time to enter the work site without wearing a helmet. To solve this problem,it proposes an intelligent detection technology based on safety helmets. This technology uses the YOLOv5 algorithm to train the data,and uses the YOLOv5s model with the smallest network depth and width in the YOLOv5 series. The test results show that the average precision of training and testing in self-collected data is 95. 4%,which can meet the requirementof real-time monitoring of people wearing safety helmets in high-risk places such as power plants.

     

/

返回文章
返回