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Abstract—This paper proposes a novel online mode 

identification formula, which firstly applies the results from 

modal analysis to online mode identification and so overcomes the 

defect of measurement-based methods that results from them 

cannot be directly used to damp oscillations. In this formula, a 

Prony-based multi-signal processing (PMP) method is developed 

to estimate the mode shape from ringdown data and a mode shape 

matching method is firstly introduced for finding out which 

modes are activated in the real-time oscillation of a large-scale 

power system. Simulation studies based on China Southern 

Power Grid have been carried out to verify the correctness and 

applicability of the proposed formula and methods. 

Index Terms—Online mode identification, mode shape 

estimation, Arnoldi method, mode shape matching. 

I.  INTRODUCTION 

OWER system small signal stability problem is one of the 

most serious threats to system stability [1]. To damp 

oscillations caused by this problem, a precise and real-time 

identification of dominant modes is the basic requirement for 

system operators to adopt emergency oscillation control. 

Generally, two kinds of methods have been proposed to 

identify dominant modes of a power system, the traditional 

modal-based methods [2]-[4] and the measurement-based 

methods [5]-[13] using PMU data. Even though modal 

analysis can obtain plenty of control information, without real-
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time monitoring, operators can’t identify which modes are 

activated in the real-time oscillation. 

To identify dominant modes online, methods such as Prony 

analysis [5], Matrix Pencil method [6], N4SID method [7], and 

RLS method [8]-[9] have been proposed. As for the mode 

shape estimation, methods such as Spectral-based method 

[10]-[11] and Transfer Function method [12]-[13] are also 

proposed. However, though measurement-based methods can 

identify dominant modes in near real time, lack of participation 

factors and sensitivities makes them unable to be directly 

applied to emergency oscillation control.  

Set the the equilibrium point of modal analysis as stable 

operating point after fault. Then theoretically, we can find the 

corresponding mode of λm in the results of model-based 

methods, which is defined as the activated mode. The activated 

mode carries information of real-time oscillation and system 

model, so it can be used to damp the oscillation. 

To realize online mode identification, the novel online mode 

identification formula is proposed in this paper. Firstly, obtain 

the dominant modes λm and corresponding mode shapes from 

ringdown data of the real-time oscillation. Second, based on 

the system model, Arnoldi method is used to search the closest 

modes of λm. Finally, the activated modes should be identified 

by mode shape matching. 

Just as shown in Case B of Fig. 1, there are many similar 

modes in the results from model-based method. λm may 

correspond to one of these similar modes or may be a 

superposition of them. In such case, we cannot figure out 

which modes are activated according to only the differences 

between modes. To solve this problem, the mode shape 

matching method is firstly proposed in this paper.  

Once the activated modes are identified by the formula, 

operators can take measures of control in near real time [14].  

The remainder of this paper is organized as follows. Section 

II and III present the PMP method and modal analysis. The 

mode shape matching method is proposed and explained in 
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Section IV. Simulations are implemented in Section V to 

validate the correctness and applicability of the proposed 

formula and methods. Conclusions are shown in Section VI. 

 

Fig. 1.  Different cases in finding out the activated modes. 

II.  THE PMP METHOD 

In this section, a new Prony-based multi-signal processing 

(PMP) method is proposed to obtain the dominant modes and 

corresponding mode shapes from the ringdown data.  

If a system can be described by a linear state space model, 

its homogeneous responses are a sum of exponentially damped 

sinusoidal signals, which are also known as the ringdown data: 
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where [ ]y j  is the pure ringdown data at time j t , i is the 

mode to be estimated, t  is the sampling interval, n is the 

number of eigenvalues, N is the number of measurement data 

in a sample window, ic is the amplitude of the i-th mode. 

Define ˆ[ ]y j  as the measurement ringdown data described 

by (1). Note that it contains measurement and process noise in 

addition to the pure ringdown signal. To filter out noise, the 

number of measurement data in a sample window N is usually 

selected to be greater than 2n [5]. 

Firstly, apply the least square method to solve the following 

equations to calculate the  1 2[ ]= , , ,
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are the measurement ringdown data of different state variables, 

and m is the number of measured state variables. 
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are the error vectors, where ei[k] represents process noise. 

Then the least-square problem can be described as 
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where Λ is composed of the forgetting factor, a positive 

constant slightly smaller than or equal to 1 [15]. 

After obtaining the coefficients of characteristic polynomial 

θ[k] by solving (6), modes can be easily gotten by solving the 

polynomial 
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Then the Prony coefficient can be estimated by the least 

square method 
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Set the state variables Δxl (l=1,2,…,m) as the measured data. 

Then (1) can be reconstructed as 

1 2

1 2[ ]= + + + ( 1,2, , )n j tj t j t

l l l nlx j c e c e c e l m
   

   (11) 

Notice that in modal analysis, the time domain response of 

state variables is [4] 

 1 2
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l l l n l nx t k v e k v e k v e
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      (12) 

 Considering that the coefficients of exponential term in (11) 

and (12) should be equal respectively, it can be seen that for a 

certain mode i  , il i lic k v . Further, for different state 

variables 1 2, , , mx x x , we can get   

 i i ik c v   (13) 

where 
1 2[ , , , ]T

i i i imc c cc , 
1 2[ , , , ]T

i i i miv v vv .  

Even though ki is unknown, it suggests that after rotation 

and stretch, vector ci can be converted to vi and the relative 

relationships between elements of vector are constant, and it is 

just i ic v . 

So ci can be used to stand for the partial mode shape of λi.  
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where cil is the coefficient of ite


 in the l-th state variable, 

column vector 1m

i C c  is the mode shape of λi from the PMP 

method. And just like Prony analysis, λi with the largest 
2ic  

is the dominant mode. 

In practice, part of the mode shape composed of the large-

amplitude state variable elements can maintain the main 

feature of the whole mode shape and is accurate for the mode 

shape matching method.  

III.  MODAL ANALYSIS 

A.  Power System Model 

The power system model can be represented by a set of 

differential and algebraic equations. 
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where 
nx  and my  are state and algebraic variables, 

respectively.  

Suppose power system is currently running around an 

operation point 0 0( , )x y . (15) can be linearized as 
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Eliminating y  in (16) gives 

  x = A x ,  (17) 

where 
1 A A BD C  is the state matrix. 

Let i  and iv , 1,2, ,i n  , denote the i-th eigenvalues 

and corresponding eigenvectors of A , i.e., 

 i i iAv v   (18) 

Around such equilibrium point, after disturbance, the time 

domain responds of (17) can be represented as 
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For the i-th state variable, that is, 
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In (19) and (20), ik  is a constant. 
,i jv  in (20) denotes the i-

th element of jv . Obviously, the time domain response of ix  

is related to all modes of the system. 

B.  Selection of Candidate Modes 

In the proposed formula, after obtaining the dominant mode 

λm of the real time oscillation,  Arnoldi method using the shift-

inverse and Cayley transformation is applied to search the 

similar modes around λm in modal analysis, and the 

corresponding mode shapes can be also obtained [16]. 

Among these similar modes of λm, candidate modes for 

mode shape matching should be selected by mode comparison. 

Here we define the mode error as 

 modal m

m

ME
 




   (21) 

where λmodal is the mode from modal analysis.  

Then the candidate modes should satisfy 2 requirements: 

ME with λm is smaller than the mode error tolerance ε1, and 

damping ratio is smaller than the damping ratio tolerance ε2. 

IV.  MODE SHAPE MATCHING METHOD 

In a large-scale power system where the mode distribution is 

quite dense, differences between similar modes are too small. 

The dominant mode from the PMP method may correspond to 

one of these similar modes or may be a superposition of them. 

Considering differences between the mode shapes of these 

similar modes, we propose the mode shape matching method 

to solve this problem. 

Here we use mode shapes of the candidate modes as the 

basis to fit that from the PMP method so that we can find the 

activated modes by their fitting coefficients. 

That is 

  V b c   (22) 

where 1 2[ , , , ]sV v v v ,
m

i v  is the mode shape of i-th 

candidate mode from modal analysis, 
mc  is the mode 

shape of the dominant mode from the PMP method, 
T

1 2[ , , , ]sb b bb ，bi is the fitting coefficient of λi, and s is 

the number of fitting basis. Then b will be solved with the 

least-square method. 

The fitting result vfit is 

 
fit  v v b   (23) 

where 1 2[ , , , ]sv v v v ,
1 2[ , , , ]T

sb b bb . 

Define the match error of amplitude and angle as 
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If MEamp <2% and MEangle <5°, we think the mode shape 

matching is successful and obviously vi with the largest bi 

corresponds to the dominant mode λi.  
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V.  SIMULATION STUDY 

Simulations are used to evaluate the performance of the 

proposed online mode identification formula. The China 

Southern Power Grid is selected to validate the applicability in 

large-scale power system of the proposed mode shape 

matching method. 

A.  Implementation of the Algorithm 

    1)  Online Estimation Using the PMP Method 

Analyze the measured signals by the PMP method, and 

obtain the oscillation dominant modes and corresponding 

mode shapes. In Prony analysis, the problem of model order 

selection is still under research [5], [15]. In this paper, 

considering the relationship between sampling frequency and 

that of the oscillation, we define n=20 and then N=40 in (1).  

    2)  Selection of the Candidate Modes 

Obtain the closest modes of λm by Arnoldi method using 

shift-inverse and Cayley transformation, and then pick out the 

candidate modes by mode comparison. Considering the mode 

distribution of test system, ε1 and ε2 are set as 15% and 8% 

respectively after numerous simulations. 

    3)  Mode Shape Matching 

To explain in detail, if the mode from the PMP method is 

similar to more than one candidate mode in modal analysis, the 

candidate modes are chosen as the basis for the mode shape 

matching method. If the MEamp <2% and MEangle <5°, we think 

the fitting is success and the modes with larger fitting 

coefficient are dominating the oscillation. 

B.  China Southern Power Grid 

The China Southern Power Gird is introduced here as an 

example of the large-scale power system. It is an AC/DC 

hybrid power system consisting of Guangzhou, Guangxi, 

Yunnan, Guizhou and Hainan five provinces. There are 12271 

nodes, 13991 branches and 22 DC links. Rightmost modes 

distribution of this system is shown in Fig. 2. 

 

Fig. 2.  Rightmost modes distribution of China Southern Power Grid. 

From Fig. 2 we can see that the mode distribution is so 

dense that many low-damping modes are quite close to each 

other, which makes the mode shape matching necessary. In 

this test system, the measured state variables we select are the 

rotational speed difference   of these generators: 

DAHUAG1~5, ZEL1,2,4, 4DFDCg1~4, HESACG3, 

DONGFG1~4, MAW1~6. The oscillation caused by these 

low-damping modes can be observed through these large-

amplitude state variables.  

Assuming the system is operating in a certain equilibrium 

point, a three-phase short-circuit grounding fault occurs in 

Shuixia side of the tie line between Shuixia and Zengche. The 

fault will be removed after 5 periods. The proposed online 

mode identification formula is carried out as follow: 

Step 1: The PMP method is applied to the measured ringdown 

data. In the results, we find two dominant modes -0.0647 

±1.2611i (mode 1) and -0.1167±2.3894i (mode 2). 

Step 2: The Arnoldi method is applied to search the closest 

modes in modal analysis of mode1 and mode 2 respectively, as 

shown in Fig. 3. By mode comparison, mode 1 only has one 

candidate mode -0.065±1.264i. As to mode 2, there are five 

candidate modes in modal analysis. The corresponding mode 

shapes are also obtained by modal analysis. 

 

Fig. 3.  The mode comparison of the China Southern Power Gird. 

Step 3.1: Since there is no other mode whose ME with 

mode 1 is smaller than 0.15, we directly match the mode shape 

of -0.065±1.264i with that of mode 1. The MEamp and MEangle 

of mode 1 are 0.12% and 1.22°, which means the fitting result 

is exact enough. 

Step 3.2: As to mode 2, there are five candidate modes in 

modal analysis similar to it as shown in Table. III. The mode 

shape from the PMP method of mode 2 is shown in Fig. 4 a). 

Then in (22), v consists of the mode shapes of five candidate 

modes shown in Table. I and c is the mode shape of mode 2 

from the PMP method. Next, b is solved by (22) and shown in 
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Table. I. The fitting result vfit is shown in Fig. 4 b). The MEamp 

and MEangle of mode 2 are 0.14% and 1.94°, which means the 

fitting result is exact enough.  

By the fitting coefficients, mode 2 -0.1167±2.3894i from 

the PMP method is mainly composed of the modes -

0.111±2.413i and -0.131±2.610i from modal analysis. 

 

a)                                                          b) 

Fig. 4.  a) Mode shape of mode 2 -0.1167±2.3894i from the PMP method; b) 

fitting result vfit from the mode shape matching method. 

In conclusion, by the proposed online mode identification 

formula, -0.065±1.264i, -0.111±2.413i and -0.131±2.610i are 

the dominant modes of this oscillation, based on which the 

control actions should be taken. 

TABLE  I 

FITTING COEFFICIENTS OF MODE SHAPE MATCHING  

Candidate 

Mode 

Mode 

Error 

Damping 

Ratio 

Amplitude of b 

( -210  ) 

-0.089±2.042i 0.14 4.35% 1.85 

-0.107±2.365i 0.01 4.52% 1.11 

-0.111±2.413i 0.01 4.60% 6.31 

-0.131±2.610i 0.09 5.01% 2.36 

-0.204±2.702i 0.14 7.53% 0.27 

VI.  CONCLUSION 

A novel online mode identification formula to find out the 

activated modes in the real-time oscillation of large-scale 

power system is proposed. It firstly applies the results from 

modal analysis to online identification and so overcomes the 

defect of measurement-based methods that results from 

measurement-based methods cannot be directly used to 

emergency oscillation control. The correctness and 

applicability of the proposed formal and methods has been 

evaluated on the China Southern Power Gird.  
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