
            

 

  

Abstract—In order to make full use of the active function of the 

photovoltaic (PV) power unit itself, a decentralized frequency 

regulation strategy for PV plant is proposed based on droop 

control idea in this paper. The active power regulation value, as 

an additional active power reference, is obtained according to the 

frequency regulation coefficient of PV unit; then the active power 

output of the PV unit is quickly regulated to the reference value, 

so that the frequency recovery of power system is restored. Since 

each PV unit in the power plant can achieve frequency regulation 

directly through the change of terminal frequency value, the 

response time will be faster than other control modes. Finally, a 

PV power plant which adopts the decentralized frequency 

regulation system is modelled on the DIgSILENT PowerFactory 

platform, and the control effect of the decentralized frequency 

regulation is verified by simulation results under different 

disturbances. 

 
Index Terms—PV plants, droop control, decentralized 

frequency regulation, DIgSILENT PowerFactory 
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I. INTRODUCTION 

ith the outbreak of the energy crisis and the increasingly 

serious environmental problems, the development and 

utilization of renewable energy has become the core issue of the 

strategic transformation of energy in the world. Renewable 

energy is gradually becoming an important source of new type 

power, in the meantime the structure and operation mode of 

power system will undergo major changes. By the end of 2017, 

the cumulative installed capacity of China's grid-connected 

wind power reached 164 million kilowatts, and the cumulative 

grid-connected capacity of PV power reached 130 million 

kilowatts. The wind and PV power systems are connected to the 

grid via power electronical converters. Generally speaking, 

when they operate in the maximum power point tracking 

(MPPT) mode, they do not participate in the power grid 

frequency regulation. However, when capacity of renewable 

energy integrated in power system exceeds a certain value, 

there exists a requirement for renewable energy to participate in 

grid regulation to ensure the safety of power system [1-3]. 

 Renewable energy [4-9] and energy storage system [10] all 

can provide active power and frequency support for power 

system. However, the high cost and short service life of the 

energy storage system are its main shortcomings. National 

standards of many countries (such as China [11-12]) specify 

that wind farms and PV power plants need to have the ability to 

participate in power system frequency regulation. In Northwest 

China, fast frequency response tests of the PV inverters have 

been conducted, and it is shown that the fast frequency response 

contribution of PV inverters is equivalent to hydropower 

generating units with the same capacity [6]. Research on 

frequency regulation by wind power generation has been 

relatively adequate [5], while the research on PV is lacking. 

In this paper, a decentralized frequency regulation strategy of 

PV power plant based on the droop control idea is proposed, 

which makes full use of the fast adjustment of own active 
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power. After each PV power unit get change of the system 

frequency, the active power adjustment amount is calculated 

according to the frequency modulation coefficient, which is 

added to the PV power unit active power control system, and 

rapidly changes the active power output of the PV power unit, 

therefore the frequency of the system is restored. 

II. IMPLEMENTATION PRINCIPLE OF DECENTRALIZED 

FREQUENCY REGULATION CONTROL 

A. Principle of PV participation in system frequency        

regulation 

According to the inverter dq control equation (1). 
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Where s  is differential operator. 

When the grid voltage vector is used as the standard for 

d-axis positioning, the voltage of the q-axis 0sqU = , then the 

active power P  and the reactive power Q  are expressed in the 

dq0 coordinate system as 
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The PWM control then may be governed by changing the 

modulation ratio M and the phase shift angle   of the 

modulated wave. When the value of 
cdU  and 

cqU  are given, 

the modulation ratio M  and the phase shift angle   can be 

obtained as follows, 
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    The block diagram of the inverter transient control model can 

be obtained according to (1) ~ (3). As can be seen from Fig.1, 

the control of the current values of di and 
qi  on the output loop 

control of the inverter is realized by changing the output 

voltages cdU and
cqU , the output voltage is controlled by 

changing the modulation amount M  and the phase shift angle 

 of the PWM, and the active power P  and the reactive power 

Q  can also be controlled by the way shown as Fig.1. However, 

there is mutual coupling between the d and q axis current in this 

control, which makes it difficult for independent control. 

Therefore, in order to reduce the difficulty of control design, 

decoupling control is needed. 
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Fig.1. Block diagram of the inverter PWM control model 

Normally, each inverter is expected to achieve independent 

control of active and reactive power when the grid-connected 

PV power system is running. The output of PWM can be 

controlled by modulation ratio M  and phase shift angle , so 

that the inverter can control these two quantities. The active 

power of PV system is balanced, that is, the loss of the system 

active power and the output of AC side are balanced with the 

active power of PV output, so the constant DC voltage control 

is a common control method for PV system integrated into 

power system. 

Assuming that the acquisition frequency of the 

grid-connected side is f , which is transmitted to the droop 

control. The reference frequency of the PV array is set to
0f , 

and the difference f indicates the deviation of the system 

frequency, which is caused by the active power fluctuation of 

the PV array. The frequency regulation control schematic is 

shown in Fig. 2. 
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Fig. 2. Schematic diagram of PV array control 

B. PV participation system frequency regulation control 

structure  

   The active power output of PV system should be reduced 

when the system frequency increases. The power control 

command is obtained through the feedback of the frequency 

deviation f , then the inverter controls the inner loop current 

output by adjusting the reference value of the outer loop voltage 

to reduce the PV output. When the system frequency is reduced, 

the PV should increase the active power output. Similarly, the 

inner loop current output is controlled by adjusting the 

reference value of the outer loop voltage to increase the output 

of the PV. 
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Fig. 3. System structure of decentralized frequency regulation 

    The structure of the decentralized frequency regulation 

control system is shown in Fig.3. The specific implementation 

is as follows: each PV power unit acquires the system 

frequency from measurement. When the system frequency 

deviation exceeds the dead zone of frequency regulation, the 

active power reference value of PV power unit is changed 

according to the preset frequency-power adjustment coefficient. 

Therefore, the active power output of the converter is adjusted 

according to refP . The process is as shown in Fig.4, and the 

implementation principle is the same as the active output 

control of the centralized frequency regulation control mode. 

The implementation of the active power-frequency regulation 

control system is shown in Fig.5. 
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Fig.4. PV power generation unit with frequency control 
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Fig.5. Active-frequency control system model 

III. PRINCIPLE OF SEGMENTED FREQUENCY MODULATION 

CONTROL  

For PV power plants with decentralized frequency regulation 

control, PV inverters can set different frequency regulation 

dead zones and active power-frequency adjustment coefficients 

according to grid scheduling requirements. In order to make 

full use of the rapid active power regulation characteristics of 

PV inverter to support system frequency recovery, the 

subsection control mode of the PV inverter is proposed on the 

basis of the original frequency regulation control mode which 

based on the internal inverter control form and the location of 

the PV plant integrated into power system. When the system 

frequency and the reference frequency deviate greatly, a larger 

frequency-active adjustment coefficient is needed to obtain 

large amount of active power support to maintain frequency 

recovery; conversely, a smaller frequency active power 

adjustment coefficient is set to reduce the overshoot of 

frequency. The implementation of the original frequency 

regulation control mode and the segmentation control mode is 

shown in Fig.6 and the meaning of the parameters in the figure 

is shown in Table 1. 

  
(a) basic control mode   

 
(b) subsection control mode 

Fig.6. Curve of frequency regulation control mode 

Table 1 Parameter definition of the subsection  
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frequency regulation control  

Parameter Definition 

P0 Steady-state initial value of active power 

PN Active power rated value 

f0 System reference frequency 

fL1 Dead zone threshold of frequency action 

fL2 Action threshold of frequency adjustment II  

fH1 Dead zone threshold of over frequency action  

fH2 Action threshold of over frequency adjustment II 

Kf1 Active frequency regulation factor (under frequency I) 

Kf2 Active frequency regulation factor (over frequency I) 

Kf3 Active frequency regulation factor (under frequency 

II) 

Kf4 Active frequency regulation factor (over frequency II) 

IV. SIMULATION VERIFICATION 

A. Model construction 

    A two-area four-machine system, as shown in Fig.7, is 

established based on the DIgSILENT PowerFactory platform 

[13]. 
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Fig.7. The two-area four-machine power system based on PowerFactory  

   In order to conveniently study the operation performance of 

the PV power plant participating in the system frequency 

regulation control, some large-scale PV power plants are 

connected to bus08 and bus09 of the classic two-area 

four-machine power system. Specifically, four PV power plants 

are connected to the bus08, which installed capacity are 

200MW (plant I), 100MW (plant II), 200MW (plant III), and 

200MW (plant IV) respectively. The installed capacity of PV 

power plants connected to bus09 are 400 MW (plant I) and 400 

MW (plant II) for analyze and compare the performance 

differences between the centralized and decentralized 

frequency regulation control mode. The plant I and plant II 

under the bus08 node were selected to set up in detail. Among 

them, the plant I has 8 feeders and the plant II has 4 feeders. 

B. Simulation verification 

    When t=3s, the load L7 connected to bus07 drops 200MW, 

and the system frequency changes. In order to verify the 

frequency regulation performance of the decentralized 

frequency regulation control system of the PV power plant, the 

simulation comparison of the basic and the subsection control 

mode was carried out. The curves of the system frequency and 

the active power output in two different control modes are 

shown in Fig.8. 
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(a)  System frequency 
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(b) Active power output of PV power plant 

Fig.8. Simulation curve (red line: basic control; blue line: subsection control) 

 

    The simulation results show that when the system load drops, 

the system frequency rises, each PV power plant unit execute 

the frequency control according to the preset active frequency 

adjustment coefficient immediately after sensing the system 

frequency deviation. Thereby, the active power output of the 

power plant is rapidly reduced, and the frequency of power 

system is restored. 

V. CONCLUSION 

This paper proposes a decentralized frequency regulation 

strategy for PV power plant based on the droop control. After 

the system frequency changes, each PV power unit calculates 

the active power adjustment amount according to the frequency 

regulation coefficient, which is added to the PV unit active 

power control system. Thereby, the active power output of the 

PV unit can be quickly changed and the system frequency can 

be recovered. The response time should be faster since the PV 

units realize the frequency regulation control through the 

change of the terminal frequency value. Finally, based on the 

DIgSILENT PowerFactory platform, the PV power plant 

adopting the decentralized frequency regulation is connected to 

the two-area four-machine power system, the control effect is 

verified by setting the load change disturbance. 
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