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Abstract—This work proposes a scenario-based stochastic 

microgrid investment planning model in the presence of various 

forms of generation and demand with operational uncertainties. 

The solution aims to minimize the overall cost and carbon 

dioxide emissions in microgrid through determining the optimal 

placement and capacities (i.e. siting and sizing) of the 

distributed energy resources (DERs). The DER mix comprises 

of the wind turbines, photovoltaics, gas-boiler, and combined 

heat and power units. The proposed planning model is based on 

linear power flow and heat transfer equations, and explicitly 

captures the interaction between electricity and heating DERs. 

To address the operational uncertainties associated with the 

wind and photovoltaic generation as well as the electricity and 

heating demands, an uncertainty matrix is adopted. The 

uncertainty matrix is generated using the heuristic moment 

matching (HMM) method that effectively captures the 

stochastic moments and correlation among the historical data. 

The numerical results from a case-study on 19-bus microgrid 

test system confirm the effectiveness of the proposed model.  

Index Terms—microgrid; distributed energy resource; 

heuristic moment matching; operational uncertainties.  

NOMENCLATURE 

Indices and Sets 

c Set of continuous distributed energy resources 

(DERs): photovoltaic (pv), Gas boiler (bl) 

d Set of discrete DERs: wind turbine (wt), 

CHP-internal combustion engine (ice) 

g Set of all distributed energy resources ( )c d  

l Set of loads: electricity (el), heating (hl) 

/ Hh   
Index/set of generated scenarios 

/ Bi   
Index/set of buses  

/ Li j 
 

Index/set of branches 

Parameters 

chp  Heat-to-power recovery ratio of CHP-ICE 

ij  Heat loss coefficient for heat transfer pipe i-j 

(% per meter) 

,i i j 
 Correlation factor of ith bus and branch

 
i-j  
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gar  Annuity rate for gth DER 
uc  Penalty cost of unsupplied loads ($/MW) 
dcc  Capital cost of discrete DER ($/MW) 
gec  Emissions rate for gth DER (kg/MWh) 

,c cfc vc  Fixed capital cost ($) and variable capital cost 

($/MW) of continuous DER  

ijh  Heat transfer capacity for pipe i-j (MW) 

,I I  Lower & upper limit on branch current 

,h yN N  Number of scenarios and hours of a year 
goc  Operation cost of gth DER ($/MWh) 

i

dP
 

Maximum operating power of discrete DER at 

ith bus (MW) 

,ij ijr x   Resistance and reactance of branch i-j 

,v v  Lower and upper limit on bus voltage 

Variables and Functions 

i

cb  Binary variable for continuous DER at ith bus 

costC   Overall microgrid costs 

2COC   Overall microgrid CO2 emissions  

,ij hh  Heat flow in pipe i-j for scenario h (MW) 

,ij hI   Current in branch i-j for scenario h 
i

dn  Number of discrete DERs at ith bus 

, ,,ij h ij hp q

 

Active and reactive power flow in branch i-j 

for scenario h (MW) 

, ,,g g

i h i hP Q  Active and reactive power output of gth DER at 

ith bus for scenario h (MW) 
i

cP  Continuous DER capacity at ith bus (MW) 

,l l

i iP Q  Active/reactive load at ith bus (MW) 

, ,,l l

i h i hP Q  Active/reactive load at ith bus for scenario h 

(MW) 

,pv pv

i iP Q  Rated active and reactive power capacity of 

photovoltaic at ith bus (MW) 

, ,,pv pv

i h i hP Q  Active and reactive power output of 

photovoltaic at ith bus for scenario h (MW) 

,

u

i hP  Unsupplied loads at ith bus for scenario h (MW) 

,wt wt

i iP Q  Rated active and reactive power capacity of 

wind turbine at ith bus (MW) 

, ,,wt wt

i h i hP Q  Active and reactive power output of wind 

turbine at ith bus for scenario h (MW) 

,i hv    Voltage at ith bus for scenario h 
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I. INTRODUCTION 

O ensure the security of power supply and mitigation of 

carbon emissions, conventional microgrids (MGs) are 

transitioning to renewable based multi-energy microgrids [1]. 

Such microgrids offer several benefits, in terms of renewable 

integration, low carbon dioxide emissions, in addition to the 

security and economy of power supply. However, this 

transition is accompanied by the uncertainties of intermittent 

renewable distributed energy resources (DERs), i.e. wind 

turbines (WTs) and photovoltaics (PVs). Thus, advanced 

network planning tools are required to explicitly address such  

operational uncertainties introduced to the microgrid network 

[2], and efficiently model the interaction between electricity 

and heating DERs in the multi-energy microgrids [1]. 

In the existing literature, the MG planning models in  [3], 

[4] studied the electrical energy flows in the microgrid, but 

the energy flows of heating and cooling were not considered. 

Similarly, the planning techniques in [5], [6] investigated the 

supply and demand of electricity in the distribution network 

with a restricted DER mix. A few works [7]–[10] 

investigated the planning of multi-energy microgrid 

considering the electricity and heating demands. The authors 

in [7], studied the optimal allocation of an electricity and 

heating DER mix, however, electrical energy was modeled as 

a commodity, and the power flow constraints were neglected. 

Similarly, the DER planning methods in [8], [9] ignored the 

power flow equations. In [1], [10], both electrical and thermal 

networks were modeled for the optimal allocation of 

combined heat and power (CHP) and renewable DERs. 

However, the nonlinear formulation in [10] is solved via a 

stochastic technique, which is not computationally efficient. 

In addition, the uncertainties of renewable generation and 

load demand were not investigated in [1]. 

To address the aforementioned technical challenges, this 

work proposes a scenario-based stochastic multi-energy 

microgrid investment planning (MMIP) model. The proposed 

planning approach utilizes linear power flow and heat 

transfer equations to model the interplay between electricity 

and heating DERs. The main technical contributions made in 

this work are: (1) The operational uncertainties associated 

with WT generation, PV generation and electricity/heating 

demand are explicitly modelled via an uncertainty matrix, 

using the heuristic moment matching (HMM) method; and 

(2) the uncertainty matrix is incorporated to formulate the 

scenario-based stochastic MMIP model to determine the 

optimal siting and sizing of electricity and heating DERs to 

minimize the overall microgrid cost and CO2 emissions.  

The rest of the work is organized as follows: Section II 

presents the modeling of multi-energy microgrid and 

HMM-based uncertainty matrix, along with the formulation 

of proposed MMIP problem; Section III presents and 

discusses the numerical results; and finally, Section IV 

presents the conclusion and future work.  

II. THE PROPOSED APPROACH 

The framework of the scenario-based stochastic MMIP 

model is summarized in Fig. 1. Firstly, the uncertainty matrix 

comprising of the representative scenarios for WT/PV 

generation and electricity/heating demand is generated using 

the HMM method [11]. Then, the uncertainty matrix is 

incorporated to formulate the proposed MMIP problem using 

YALMIP modelling language [12]. Finally, the MMIP 

problem is solved in CPLEX-MATLAB interface [13]. 

Apply matrix transformation to satisfy 

target correlation matrix [eq. 2]
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Output the uncertainty matrix

Y

Apply cubic transformation to satisfy 

target moments [eq. 3-4]

 
Fig. 1. Framework of multi-energy microgrid investment planning model 

A. Multi-energy Microgrid Model 

The multi-energy microgrid model is shown in Fig. 2. The 

electricity demand is supplied by a mix of CHP-enabled 

internal combustion engines (ICE), wind turbines and 

photovoltaics. The heating demand (i.e. space and water 

heating) is delivered by a mix of the gas-fired boilers and 

recovered heat from CHP-ICE. The association between 

electricity and heating dispatch in the microgrid is made 

possible by the consideration of CHP recovered heat. In this 

work, continuous variables are used to model the optimal 

capacities of DERs available in small-scale modules, hereby 

called the continuous DERs, i.e. PV and boiler. Discrete 

variables are used for the rest of the DERs, hereby called the 

discrete DERs, i.e. WT and CHP-ICE.  

T 
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Fig. 2. Multi-energy microgrid system model 

B. Scenario Modeling 

The uncertainty matrix is modeled via the HMM method 

[11], which captures the stochastic moments (i.e. expectation, 

standard deviation, skewness, and kurtosis) and correlation 

among the historical data.  Firstly, the target moments and 

target correlation matrix (R) of the historical hourly WT/PV 

generation and demand are determined, and normalized [11],  

as given in (1), where ,

NT

i kM  and ,

T

i kM  are the 
thk  

normalized moment and 
thk target moment of 

thi column 

vector, respectively. In (1), 1,2,3,4k  refer to expectation, 

standard deviation, skewness and kurtosis, respectively, 

while 1,2,3,4i   refer to WT generation, PV generation, 

electricity load and heating load, respectively. Then, 
hN  

scenarios of uN  uncertainty factors, i.e. WT generation 1( )X , 

PV generation 2( )X , electricity load 3( )X  and heating load 

4( )X are randomly produced to obtain the n-dimensional 

random matrix 
h uN ×NX  [11]. Then, matrix transformation 

[11], as given in (2), is applied to convert h uN N
X into the 

n-dimensional matrix 
h uN NY  to satisfy R , where L  is the 

lower-triangle matrix of R  determined via Cholesky 

decomposition. Then, cubic transformation [11], as given in 

(3), transforms Y h uN N  into n-dimensional matrix of 

normalized scenarios Z h uN N to satisfy ,

NT

i kM . , , ,i i i ia b c d in 

(3) are calculated assuming that the moments of target 

scenarios ( ( ))iZi,kM are equal to ,

T

i kM , as given in (4). The 

solution converges when the moment error ( )m  and 

correlation error ( )c , as given in (5) and (6), respectively, 

are less than predefined thresholds, i.e. 5%, 5%m c   . 

G

ikM  in (5) is the 
thk  moment of 

thi  generated column 

vector
i

Z . In (6), 
G

ilR  is correlation matrix of generated 

scenarios and
NT

ilR is target correlation matrix of historical 

scenarios. Lastly, Z
h uN N is inverted to satisfy ,

T

i kM , resulting 

in the uncertainty matrix =[ ]H el hl wt pv

h h h hP ,P ,P ,P , containing 

scenarios of WT generation ( )wt

hP , PV generation ( )pv

hP , 

electricity load ( )el

hP and heating load ( )hl

hP , as given in (7). 
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
  

 

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M MH

i
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C. Problem Formulation 

To capture the network uncertainties, the uncertainty 

matrix is integrated with the deterministic decision variables 

( , , , )wt pv el hl

i i i iP P P P , as given in (8). The objective of the 

proposed MMIP problem is to minimize the overall 

microgrid costs and CO2 emissions over the planning 

horizon, under all scenarios. The overall costs objective in (9) 

accounts for the annualized investment cost of discrete and 

continuous DERs (where annuity rate depends on interest 

rate and DER lifetime), the operation cost and the cost of 

unsupplied loads. The CO2 emissions objective in (10) 

considers the CO2 emissions from the operation of all DERs. 

As suggested in [1], the operation costs and emissions in (1) 

and (2), respectively, are scaled up from H-scenarios to 8760 

hours of a year using the weight factor ( / )y hw N N .  

[ , ] [ , ] [ , ]

,

[ , ] [ , ] [ , ]

,

g wt pv g wt pv g wt pv

i h i h

l el hl l el hl l el hl

i h i h

P P P

P P P

  

  

  


 

 (8) 

 cost

, ,

, ,

, , ,

. . . . . .

. .

d d d d c c c c c

i i i i

i c i d

N N
y yg g u u

i h i hN N
h h

i g h i h

C n P cc ar fc b vc P ar

P oc P c

  

 

 

 
 (9) 

2 ,

, ,

.
N

y g g

CO i hN
h

i g h

C P ec   (10) 

The objectives in (9) and (10) are subject to the following 

electricity and heating network constraints. The electricity 

network security constraints (11)-(16) adopt the 

mixed-integer quadratically constrained programming based 

convex power flow model [14]. Constraint (11) balances the 

total active power generation of WT, PV and CHP against the 

load at each bus. Constraint (12) ensures the nodal power 
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balance for the total reactive power generation and load. 

Constraints (13) and (14) define the bus voltage and branch 

current, respectively, in terms of active and reactive power 

flows. Constraints (15) and (16) restrict the bus voltage and 

branch current, respectively. 

, , , , , ,

[ , , ]

( )
L

g u loss l el

i i j ij h i h i h ij h i h

g wt pv chpi j

p P P P P 



 

    

 

(11) 

, , , , , ,

[ , , ]

( )
L

g u loss l el

i i j ij h i h i h i h i h

g wt pv chpi j

q Q Q Q Q 



 

    

 

(12) 

2 2 22
, , , , ,2( ) ( )ij ijij ijj h i h ij h ij h ij hv v p q Ix xr r      (13) 

2 2 2

, , , ,i h ij h ij h ij hv I p q   (14) 

i ,hv v v   (15) 

,ij hI I  (16) 

The heat balance constraint (17) accounts for the boiler 

heat, recovered heat from CHP, heating loads, and heat 

transfer through the piping network considering losses, at 

each bus [1].  Equation (18) restricts the heat pipe capacities.  

, , , ,

, ,

( )
L

L

g bl g chp

i i j ij h i h chp i h

i j

l hl

i h ij ij h

i j

h P P

P h

 



 



 



 

 

 




 (17) 

,0 ij h ijh h   (18) 

III. NUMERICAL RESULTS AND DISCUSSION 

A. Case Study Setup 

Two cases with different objectives are considered. 

Firstly, Case I minimizes the overall microgrid costs, as given 

in (9). Secondly, Case II minimizes the composite objective 

(i.e. 50% weight for costs objective and 50% weight for 

emissions objective, as given in (9) and (10), respectively). 

The 19-bus island microgrid [1] (Fig. 4) with a radial 

electricity and heat piping network is considered. The load at 

each bus consists of the electricity and heating demand. All 

buses are considered candidate for DER placement. The 

investment parameters for the continuous and discrete DERs 

are given in Table I and II, respectively [15], [16].  

1
2

43 65 87

109

12

11

1413 15

16 17

18 19

 
Fig. 3. Topology of the 19-bus multi-energy microgrid 

TABLE I 
INVESTMENT PARAMETERS FOR CONTINUOUS DERS 

Item Photovoltaic Gas Boiler 

Fixed cost (M$) 0.0025 0.0060 

Variable cost (M$/MW) 2.5 0.045 

Operation cost (M$/MWh) 0.000040 0.0001 

Lifetime (years)  20 10  

CO2 emissions rate (tons/MWh) 0.0584 0.5600 

TABLE II 

INVESTMENT PARAMETERS FOR DISCRETE DERS 

Item Wind turbine CHP-ICE 

Minimum Size (MW) 1 1 

Capital cost (M$/MW) 2.64 3.074 

Operation cost (M$/MWh) 0.000017 0.000145  

Heat-to-power recovery ratio - 1.019 

Lifetime (years)  20 20  

CO2 emissions rate (tons/MWh) 0.0276 0.5600 

B. Scenario Generation 

Based on the HMM method, the scenarios of uncertainty 

matrix are generated using the historical WT/PV generation 

and electricity/heating demand [17]. As shown in Fig. 4, the 

moment errors between the generated scenarios and historical 

scenarios reduce significantly, as the number of scenarios 

increase from 10 to 100. Hence, the generated scenarios 

effectively capture the stochasticity of historical data. 

Thereafter, the minimum number of scenarios, providing the 

best trade-off between computational accuracy and efficiency, 

are determined by comparing the objective function value 

and computation time against the number of scenarios [15]. 

As shown in Fig. 5, the objective (Case II) converges as the 

number of scenarios reaches 80. Thereafter, the computation 

time increases without changing the objective function value. 

Thus, 80 scenarios are sufficient for the MMIP solution.  

 
Fig. 4. Moment errors between generated scenarios and historical scenarios 

 
Fig. 5. Selection of scenarios for the solution of MMIP problem (Case II) 

C. Numerical Results 

The MMIP solution (Table III) presents the optimal DER 

capacities at each bus (e.g. b1, b2 etc.), the annualized cost of 

investment, operation and unsupplied loads, and the annual 

CO2 emissions. In Case I, 4 MW of CHP-ICEs and 0.1 MW 

of gas boiler are installed to meet the electricity and heating 

demand, without investment in the wind turbines or 

photovoltaics. In Case II, which considers the composite 

cost/emission objective, 2 MW of WTs and 1.2 MW of PVs 

are allocated. Moreover, the total boiler capacity increases to 

3 MW compared to Case I, whereas the CHP-ICE capacity 

remains 4 MW. The optimal DER mix in Case II results in a 

13.5% reduction in the CO2 emissions at the expense of a 

10% increase in the total costs, compared to Case I. These 

results confirm the effectiveness of the proposed model, in 

terms of significant reductions in the costs and emissions. 

2018 China International Conference on Electricity Distribution Tianjin, 17-19 Sep. 2018

CICED2018      Paper No. 201805280000065	       Page4/5
2586



            

 

 
TABLE III  

MMIP SOLUTION: OPTIMAL DER MIX, COSTS AND EMISSIONS 

Item Case I Case II 

D
E

R
 

M
ix

 

Photovoltaic (MW) 0 0.4(b9),0.8(b5) 

Wind-turbine (MW) 0 1(b3),1(b13) 

CHP-ICE (MW) 2(b1),1(b2),1(b4) 2(b1),1(b2),1(b4) 

Gas boiler (MW) 0.1(b1) 1.6(b1),1.4(b2) 

C
o

st
s 

Investment (M$) 1.161 1.940 

Operation (M$) 3.683 3.431 

Unsupplied load(M$)  0 0 

Total (M$) 4.844 5.371 

CO2 emissions (tons) 16,563 14,329 

The optimal electricity and heating dispatch in case II for 

the July and December weekdays are shown in Fig. 6(a) and 

Fig. 6(b), respectively. Several observations can be made. 

For the July weekday, the PV output is higher due to the 

extended day-hours while the wind generation pattern is quite 

similar, compared to the December weekday. Moreover, the 

heating demand is lower, thus requiring less output from the 

CHP-ICE. For the December weekday, the CHP-ICE and 

boiler outputs pick up to meet the excessive heating demand. 

Hence, it is demonstrated that the proposed model explicitly 

utilizes the interplay between the electricity and heating 

generators to satisfy the demand. 

(a) 

 
(b) 

Fig. 6 Optimal electricity and heating dispatch in Case II (a) July weekday 

(b) December weekday  

IV. CONCLUSION AND FUTURE WORK 

This paper presented a scenario-based stochastic 

investment planning model for the multi-energy microgrids. 

The solution determined the optimal distributed energy 

resource mix, siting and sizing, whilst minimizing the overall 

microgrid costs and carbon dioxide emissions. The proposed 

model incorporated an uncertainty matrix to contemplate the 

operational uncertainties of wind and photovoltaic 

generation, as well as the electricity and heating demand. The 

uncertainty matrix was generated via the heuristic moment 

matching method which effectively captured the stochastic 

moments and correlation among the historical data. The 

effectiveness of the proposed model was confirmed in the 

19-bus microgrid test system, in terms of significant 

reductions in the microgrid costs and CO2 emissions. 

Based on the insights obtained from this work, two 

research directions are considered worth further research 

effort. Firstly, a comprehensive planning model should 

consider the electricity and heating storage systems, in 

addition to the generation and demand of cooling energy in 

the multi-energy microgrid. In addition, the efficient 

integration of plugged-in electric vehicles into the 

multi-energy microgrid should be further investigated.  
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