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Abstract—In view of excavating the non-stationary and
nonlinearity of wind power, a hybrid model based on ensemble
empirical mode decomposition (EEMD) and Volterra neural
networks(VNN) is introduced. Firstly, the end issue of EEMD is
dealt with by using the largest Lyapunov prediction. Secondly, the
new gained time series is decomposed into a series of sequences of
different time scale by the EEMD to reduce its non-stationary.
Then the VNN model of each component is established on the
basis of important parameters induding embedded
dimensions ,delay time and maximum Lyapunov exponent ,after
mining the sequences chaotic characteristics by means of phase
space reconstructed. Finally, the predicting results of each
subsequence are superimposed to gain the final estimating result.
Calculation example results show that the proposed model is able
to excavate power time series features effectively and obtain
higher prediction accuracy.

Index Terms—wind power, ensemble empirical mode
decomposition, Volterra neural networks, combined forecasting
model

| INTRODUCTION

ITH the increase of wind power installed capacity,

wind energy has adverse effects on power systems
of stability, quality and reliability, due to the variability and
fluctuation of the wind. It was proved that the accurate
prediction of wind power provided an important basis for the
dispatching department to formulate the scheduling plan and
operation mode, effectively decreasing spinning reserve
capacity and operating cost of power system, and enhancing the
economy of wind power in reference [1, 2].
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Common wind power prediction methods are divided into
two categories: physical modeling techniques based on
numerical weather prediction (NWP) and statistical modeling
techniques based on historical data, as illustrated in [3]. The
former can predict short-term wind power of 1-3 days, but it
needs to consider complex factors such as topography, air
pressure and temperature, which makes the forecasting
calculation large and costly. The latter mainly includes: time
series method [4], Kalman filter method [5], support vector
machine method [6], artificial neural network method [7],
Volterra adaptive prediction method [8] and some of
combination forecasting models, as proposed in [9-13].

In order to overcome the shortcomings of the single
method, a variety of combined prediction methods in reference
[12,13] are introduced. Other intelligent algorithms to predict
wind power has become a research hotspot.

In addition, the non-stationary of wind power has a serious
impact on the prediction accuracy. The current methods to
reduce the non-stationary power of wind power main consist:
Fourier decomposition method [14], wavelet decomposition
method [11,15] and empirical mode multi-scale decomposition
method[11].

Through mining the non-stationary and nonlinear of wind
power time series, this paper puts forward a new wind power
short-term prediction model based on EEMD and VNN. This
paper is structured as follows. Section 11 mainly describes the
correlation between the Volterra functional model and the
3-layer feedforward neural network, and solves the problem of
how to solve the kernel function. Section Il proposes a
predictive combination model of wind power based on
EEMD-VNN. In Section 1V, a calculation example is described.
Finally, in Section V, performance indicators of the prediction
models are analyzed and discussed.

I BASIC THEORY

1.1 Phase Space Reconstruction

Wind power time series has chaotic characteristics
proved in reference [16]. The wind powertiming is known
as {x(i)}» 1=1,2,---n.Constructan m-dimensionalattractor
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by reconstructing the phase space vector X (t).

X (i) = [X(0), X(0 +7), X(i +27), - X(i+(m=D7)]" (1)
Where: m is embedding dimension and zis time delay,
i=12,---,N, N =n-(m-1)z .Based on Takens' Embedding

Theorem, when m>2d +1, the reconstructed phase space
will remain equivalent to the chaotic attractor of original
dynamical system.

In this paper, the C-C (correlation-integral, C-C)
method, as illustrated in [17], is used to solve the
embedding dimension and delay time; then the largest
Lyaunov exponent A is calculated by using the Wolf
method or the small data amount method, the positive and
negative values of which can be used as the criterion for
judging whether the time series is a chaotic system.

ILII - Ensemble Empirical Mode Decomposition

IL11.1 End Extension of Wind Power Time Series
In order to suppress the inward propagation of the
endpoint error, the largest Lyapunov exponential method is
used to predict the endpoint value and to realize the extension
of the extreme point at the endpoint. A detailed description of
the specific principles and steps can be seen in reference [18].
L1111 EEMD on Wind Power Time Series
The process of EEM D decomposition is as follows:

(1) A new sequence {x(t)} is obtained by adding a white

noise sequence obeying the normal distribution (0, (a¢)?) to
the wind power data, where ¢ is the noise intensity and ¢ is the
standard deviation.

(2)The new sequence {x(t)}is decomposed into several
IMF components C; (t) and a residual signal r, (t) using EMD.

(3) Repeat steps (1) and (2) rtimes, each time adding a
white noise sequence of different amplitudes.

(4) The average value of each IMF component obtained
by decomposing a total of r times is taken as the IMF
component of the original wind power timing.

II.1II1 Volterra Neural Network Prediction Model

L1111 Volterra Functional Model
The \olterra functional model has high prediction
accuracy and clear physical meaning with limited memory, that
is, at a point k —k,far from the predicted time point- k, the
system input does not affect the output. The model applied in
this paper is:

m-1
y() =g+ 3 hy (l)x(k k) +

=0

m-1m-1 m-1m-1
D (I )X (k=o)X (K= lpr) 4o >
},=01,=0 ,=01,=0

1
3 by by I )Xk~ )Xk = Lo) - x(k—1pr) - (@)
I, =0
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where: i 1. keR » h,(l,ly,--,1,) IS the m -order kemel

function; mis the memory length of the model, the value of
which is the minimum embedding dimension of wind power
chaotictiming; 7 is the delay time, whose physical meaning are
detailed in Section 2.1 of this paper.
IL1I1.11 Combination of Volterra Functional Model
and BP Neural Network
Based on the equivalence of the Vo lterra functional model
and the 3-layer feedforward neural network, a wind power time
series VNN prediction model is established. The model is
shown in Figure 1.

Output layer

Input layer Hidden layer

Fig. 1 Volterra neural network model

m-1

Vi(k) = wy jx(k+j7) ®)
j=0

01() =ag) +ay X+ay )¢+ +a X+ (4)

where: X7 =[x(k),x(k +7),---,x(k +(m=1)z)] S a1 m
dimensional input vector; w, ,is the network weight of the
hidden layer; V, (k)is the convolution of the wind power input
signal; g,() (1=12,---,L,LeR) is the activation function,
taking the form of a polynomial, with & <R being

Polynomial coefficient.
The input formula for the wind power time series is:

L L 7] .
Yk =D Ho V() =D 5 > a (v (k) =
1=1

I=1 i=0
L o m-1 )
> ha, O w jx(k+ o)) =
1=1 i=0 i=0
L o m-1 m-1
33 0a > Wy Wi X - Xen ] (5)
1=1i=0 m=0 n=0

Where: 1 is the network weight of the output layer. Comparing
the coefficient relations of equations (2) and (5), thei-th order
Vo lterra kernel function is obtained:

L
h(z.25,....2)) = Zrlai,lwl,zlwl,zz Wi g (6)
=1
After obtaining the network weights w; , and n by training

the VNN of Fig. 1, we can solve Volterra kernel function
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according to equation (6), and then the Volterra neural network
model is obtained.
ILITLIT The VNN Model Learning Algorithm of
Wind Power

1) Based on C-C method, the embedding dimension- m
and delay time- r of wind power time series are solved.
Reconstruct phase space, and we will get space vectors, a total
of N =n-1-(m-1)r. Take the first N' as a network training,
and normalize it to map its value to [0,1].

2) The number of neurons in the input layer is the
embedded dimension, which is m; the number of neurons in the
hidden layer is obtained by the gray correlation analysis method,
which is L ; the output layer is a single output layer, that is, we
create a VNN model with structurem—L -1.

3) Initialize the hidden layer network parameter matrix
W=(m ) sxs({=12 - « +, m) and output layer network
coefficient r,. Perform the first network calculation according
to formula (6), using the data obtained by 1) and 2).

4) Calculate the target error function E :

o
E =2 D (y(K) - 5K @)
k=1

Where: y(k) is the true value and §(k) is the estimated value.
Maximum target error E_, is set to 0.025. If E < E,, , stop
the calculation, meanwhile store the network parameters
W = (W) Lam and r,.Comparing the polynomial coefficient
a; (i=12,---,m) , calculate and store each order kernel
function h;(l;,1,,--,I;) according to formula (6). Otherwise,

proceed to the next step.
3) Calculate the local gradient ¢;(k) and the network

weight parameter correction Aw ; (k) .The formula is as

follows:
oE ,
o (k)= —% 9/ (V1 (K)) ©)
Aw (k) = aAw j(k =1) + 715 (k) y(k) ©)

Where:  aAw; ;(k—1) is the introduced motion vector

(0 < a <1); i is the learning rate.
6) Correct the network weight and train the network again,
then calculate the network output §(k) and the target error E ,

and repeat training until E < E is set to 0.025 in this

paper) is satisfied.
7) Predict the wind power by using the Volterra-kernel
functions.

max ( Emax
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Il SHORT-TERM WIND POWER FORECASTING BASED ON

EEMD-VNN

This paper proposes a predictive combination model of
wind power based on EEM D-VNN.

original wind power
sequence

Phase space reconstruction

continue training the|
network to calculate
the output error

L Storage network parameters
"

A
seri jon to

adaptive overlay

error Analysis

Perform simulation prediction

Fig. 2 Structure of the wind power prediction model based on EEMD-VNN

Firstly, based on the largest Lyapunov exponent
prediction, endpoint extension is utilized to eliminate the
endpoint effect. Then the EEMD is used to decompose the new
sequence obtaining IMF components of different scales and
residual residuals, which realizes the smoothing of wind power
signals. In this paper, the largest Lyapunov exponent is
obtained by the small data volume method. Secondly, phase
space reconstruction is performed for each component, and the
appropriate number of truncated items and truncated order are
selected to establish VNN neural network model for wind
power prediction. Finally, the predicted values of the
components are adaptively superimposed to obtain a final
prediction value. The modeling process is shown in Figure 2.
IV ANALYSISOF EXAMPLES

IV.I Sample Treatment
1,
0.8F

0. 61

Wind Power Relative Value

1 1 1 1
480 720 960 1200

Number of wind power samples
Fig. 3 Time seriesof wind power
The wind power data in this paper is from the continuous
measurement data of 1440h from May 10th to July 8th of a
wind turbine provided by a certain wind farm which contains
58 G58-850 kW units with a total installed capacity of 49.3

1
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MW. The sampling period of the unit is 10min. For the
convenience of research, the samp les are averaged in hours, and
a total of 1440 data are obtained after processing, as shown in
Fig. 3.Take the first 1340 data as learning data, and the
remaining 100 data as test data.

Following the prediction steps mentioned in this paper, a

totalof 9 IMFs (IMF1~IMF9) and one residual sequence r,,are
obtained, as shown in Fig. 4. ( rtakes 100, ¢ takes 0.25)
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Fig.4 EEMD results after terminal extension
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IV.1l Evaluation Index

In this paper, the performance indicators are: normalized
absolute mean error enmaL ! normalized root mean square error

Enrmac » MaXimum relative error ey, and time cost t,,,4 to

evaluate the performance of the model. The expressions of the
four indicators are as follows:

M
e D I ORI
Pap M i3
M
eNRMAE = 5 \/ > k) -yk)y* (1)
cap k=1
eMAE—P max (90)-y()) - (12)
cap
tyax = . max n(ti) (13)

Where:

capacity ofthe fan. The ¢ is the optimal training time of the ith
subsequence.

M is the number of predicted points; P, is the rated

IV.111 Analysis of Prediction Results

The parameters of each sub-sequence VNN model are as
shown in Table 1. In order to compare with the prediction
performance of the EEMD-VNN model, this paper also

performs predictive simu lation based on the other three models.

The prediction results and errors of the four models are shown

CICED2018 Paper No. 201804270000409

Tianjin, 17-19 Sep. 2018

in Figure 5 and Figure 6 respectively; the prediction indicators
are shown in Table 2

TABLE |
PARAMET ERSOF SUBSEQUENCE COMPONENT
SUB-SEQUENCES EMBEDDING OPTIMAL DELAY
Q DIMENSION m T
IMFL 3 7
IMRF2 7 5
IMF3 8 4
IMFH 5 6
IMP5 7 10
IMF6 9 14
IMF7 4 16
IMF8 6 14
IMF9 4 12
Iy 3 5
0.8 Forecast Resukt Forecast Result !
° Based on EEMD-| Based on VNN Forecast Result Based or
3 VNN | 8l EEMD-LSSVM
‘>‘5 0 \‘\ !—\ ¢ ‘u mw |
é ? f “\ (‘1‘5 (b\ N & Forecast Result Based
S oaf ] f‘“\\lwﬁ 1 onE
P P R 197 R
PRV Whieori R4 (R
= [IR | wol VY
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& || |
& Raw Data
0
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Fig.5 Comparison of actual wind power and the predicted results
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Fig.6 Curves of wind power forecast error
TABLE |1
COMPARED ERROR INDEXESOF THE FORTH MODELS
PREDICTIVE ERROR INDEXES (%)
MODELS ENMAE ENRMAE EMAE tmax(s)
VNN 6.916 9538 23.8863 119.4849
EEMD-VNN 298 3524 6.0834 123.1993
EEMD-LSSVM 3.78 4.365 74481 973.3573
EEMD-WNN 5.719 6.619 11.5886 57.5786

V  CONCLUSION

The nonlinear and non-stationary nature of wind power
makes it difficult to achieve high-precision prediction with a
single prediction method, but combined prediction can
integrate advantages and achieve satisfactory prediction results.
As seen from Fig. 5, Fig. 6 and Table 2, all four models show
good prediction results, but their prediction performance is
different.
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(1) The EEMD is used to decompose the wind power time
series after endpoint extension into sub-sequences at different
time scales to achieve sequence smoothing and avoid distortion
of subsequences, which provides a basis for further prediction.

(2)The error index of the EEMD-WNN and the
EEMD-LSSVM is higher than that of the EEMD-VNN. It is
because that the combination of the Volterra functional model
and the neural network not only overcomes the difficulty of
solving Volterra high-order kernel functions, but also the order
of kernel functions of each sub-sequence is completely
determined by its own chaotic characteristics, thus avoiding
blind selection. Thereby accurate modeling and high-precision
prediction of nonlinear systems are realized

(3) Fromthe perspective of time cost, the EEM D-LSSVM
is the longest because it needs to optimize the super parameter,
while the EEMD-WNN takes the shortest time. The learning
time of the EEMD-VNN and the VNN are almost the same,
about twice that of the EEMD-WNN model, but much smaller
than the EEM D-LSSVM model (the latter is 8 times that of the
former).

In short, taking into account the prediction accuracy and
cost time, it can be seen that the EEMD-VNN model proposed
in this paper has better prediction performance, time cost is
more compromised, and engineering development potential is
large.
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