
  
Abstract—In view of excavating the non-stationary and 

nonlinearity of wind power，a hybrid model based on ensemble 

empirical mode decomposition (EEMD) and Volterra neural 

networks(VNN) is introduced. Firstly, the end issue of EEMD is 
dealt with by using the largest Lyapunov prediction. Secondly, the 

new gained time series is decomposed into a series of sequences of 

different time scale by the EEMD to reduce its non-stationary. 

Then the VNN model of each component is established on the 

basis of important parameters including embedded 
dimensions ,delay time and  maximum  Lyapunov exponent ,after 

mining the sequences chaotic characteristics by means of phase 

space reconstructed. Finally, the predicting results of each 

subsequence are superimposed to gain the final estimating result. 

Calculation example results show that the proposed model is able 
to excavate power time series features effectively and obtain 

higher prediction accuracy. 

 
Index Terms—wind power, ensemble empirical mode 

decomposition, Volterra neural networks, combined forecasting 

model 

 

I INTRODUCTION 

ITH the increase of wind power installed capacity, 

wind energy has adverse effects on power systems 

of stability, quality and reliab ility, due to the variability and 

fluctuation of the wind. It was proved that the accurate 

prediction of wind power provided an important basis for the 

dispatching department to formulate the scheduling plan and 

operation mode, effectively decreasing spinning reserve 

capacity and operating cost of power system, and enhancing the 

economy of wind power in reference [1, 2]. 
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Common wind power prediction methods are divided into 

two categories: physical modeling techniques based on 

numerical weather predict ion (NWP) and statistical modeling 

techniques based on historical data, as illustrated in [3]. The 

former can pred ict short-term wind power of 1-3 days, but it  

needs to consider complex factors such as topography, air 

pressure and temperature, which makes the forecasting 

calculation large and costly. The latter main ly includes: time 

series method [4], Kalman  filter method [5], support vector 

mach ine method [6], art ificial neural network method [7], 

Volterra adaptive prediction method [8]
 

and some of 

combination fo recasting models, as proposed in [9-13]. 

In order to overcome the shortcomings of the single 

method, a variety of combined predict ion methods in reference 

[12,13] are introduced. Other intelligent algorithms to predict 

wind power has become a research hotspot.  

In addition, the non-stationary of wind power has a serious 

impact on the prediction accuracy. The current methods to 

reduce the non-stationary power of wind power main consist: 

Fourier decomposition method [14], wavelet  decomposition 

method [11,15] and empirical mode multi-scale decomposition 

method[11]. 

Through mining the non-stationary and nonlinear of wind 

power time series, this paper puts forward a  new wind power 

short-term pred iction model based on EEMD and VNN. This 

paper is structured as follows. Section II mainly describes the 

correlation between the Volterra functional model and the 

3-layer feedforward neural network, and solves the problem of 

how to solve the kernel function. Section III proposes a 

predictive combination model o f wind power based on 

EEMD-VNN. In Section IV, a calculat ion example is described. 

Finally, in Sect ion V, performance ind icators of the predict ion 

models are analyzed and discussed. 

II BASIC THEORY 

II.I Phase Space Reconstruction 

Wind power t ime series  has  chao t ic characterist ics 

proved  in  reference [16]. The wind  power t iming is  known 

as { ( )}x i ， 1,2,i n=  .Construct  an  m -d imens ional attracto r 
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by reconstruct ing  the phase space vecto r ( )tX . 

T( ) [ ( ), x( ), x( 2 ), , x( (m 1) )]i x i i i iτ τ τ= + + + −X       (1) 

Where: m  is embedding d imens ion and τ is t ime delay,

1,2, ,i N=  , (m 1)N n τ= − − .Based on Takens ' Embedding  

Theorem, when 2 1m d≥ + , the reconstructed  phase space 

will remain  equ ivalent  to  the chaot ic att racto r of orig inal 

dynamical system. 

In  th is paper, the C-C (correlat ion-integral, C-C)  

method , as illustrated  in  [17], is used  to  so lve the 

embedding d imension  and  delay t ime; then the largest  

Lyaunov  exponent  λ  is calcu lated  by us ing  the Wolf 

method  o r the s mall data amount  method , the pos it ive and  

negat ive values  o f which  can  be used  as  the criterion  fo r 

judg ing whether the t ime series  is a  chaot ic system. 

II.II Ensemble Empirical Mode Decomposition 

II.II.I End Extension of Wind Power Time Series  

In order to suppress the inward propagation of the 

endpoint error, the largest Lyapunov exponential method is 

used to predict the endpoint value and to realize the extension 

of the extreme point at the endpoint. A detailed description of 

the specific p rinciples and steps can be seen in reference [18]. 

II.II.II  EEMD on Wind Power Time Series 

The process of EEMD decomposition is as follows: 

(1) A new sequence { ( )}x t  is obtained by adding a white 

noise sequence obeying the normal d istribution 2(0, ( ) )αε  to 

the wind power data, where α is the noise intensity and ε is the 

standard deviation.  

(2)The new sequence { ( )}x t is decomposed into several 

IMF components ( )iC t  and a residual signal (t)nr  using EMD. 

(3) Repeat steps (1) and (2) r times, each time adding a 

white noise sequence of different amplitudes. 

(4) The average value of each IMF component obtained 

by decomposing a total of r times is taken as the IMF 

component of the original wind power t iming. 

II.III Volterra Neural Network Prediction Model 

II.III.I Volterra Functional Model 

The Volterra functional model has high prediction 

accuracy and clear physical mean ing with limited memory, that 

is, at a point 0k k− far from the predicted time point- k , the 

system input does not affect the output. The model applied in  

this paper is:  
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where:
mi l k ∈、 、 R ,

1 2( , , , )m mh l l l is the m -order kernel 

function; m is the memory length of the model, the value of 

which is the minimum embedding dimension of wind power 

chaotic timing; τ is the delay t ime, whose physical meaning are 

detailed in Section 2.1 of this paper. 

II.III.II Combination of Volterra Functional Model 

and BP Neural Network 

Based on the equivalence of the Volterra functional model 

and the 3-layer feedforward neural network, a wind power time 

series VNN predict ion model is established. The model is 

shown in Figure 1. 
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Fig. 1 Volterra neural network model 
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where: T ( ), ( ), , ( ( 1) )[ ]x k x k x k mτ τ+ + −=X  is an m

dimensional input vector; ,l nw is the network weight of the 

hidden layer; ( )lV k is the convolution of the wind power input 

signal; ( ) ( 1, 2, , , )lg l L L⋅   = ∈ R is the activation function, 

taking the form of a polynomial, with 
,i la ∈ R being 

Polynomial coefficient. 

The input formula for the wind power time series is: 

1 1

1

,

1 1 0

1

, ,

1 0 0

1 1

, , , , ,

1 0 0 0

)

( (k j

( ) ( ( )) (

))

[ ]

( )

i i

i

L L
i

l l l i l l

l l i

L m
i

l i l l j

l i j

L m m

l i l l n l n k n k n

l i

l

nn

r g r a V

r a w x

r a w w x

y k k k

x

V

∞

∞

∞

τ

= = =
−

= = =

− −

= = = =

= =

+

=

=

∑ ∑ ∑

∑∑ ∑

∑∑ ∑ ∑      (5) 

Where: lr is the network weight of the output layer. Comparing 

the coefficient relations of equations (2) and (5), the i -th order 

Volterra kernel function is obtained: 

  
1 21 2 , , , ,
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=
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After obtaining the network weights ,l nw  and lr  by training 

the VNN of Fig. 1, we can solve Volterra kernel function 
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according to equation (6), and then the Volterra neural network 

model is obtained. 

II.III.III  The VNN Model Learning Algorithm of   

Wind Power 

1) Based on C-C method, the embedding dimension- m

and delay time- τ of wind power time series are solved. 

Reconstruct phase space, and we will get space vectors, a total 

of 1 ( 1)N n m τ= − − − . Take the first N ′ as a network training, 

and normalize it to map its value to [0,1]. 

2) The number of neurons in the input layer is the 

embedded dimension, which  is m ; the number of neurons in the 

hidden layer is obtained by the gray correlation analysis method, 

which is L ; the output layer is a single output layer, that is, we 

create a VNN model with structure 1m L− − . 

3) In itialize the hidden layer network parameter matrix 

W=(wl,j)L × m,(j=1,2, · · · ， m) and output layer network 

coefficient 
lr . Perform the first network calculation according 

to formula (6), using the data obtained by 1) and 2). 

4) Calculate the target error function E : 
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Where: ( )y k is the true value and ( )y k is the estimated value. 

Maximum target erro r maxE is set to 0.025. If maxE E< , stop 

the calculation, meanwhile store the network parameters

,( )l j L mw ×=   W and lr .Comparing the polynomial coefficient

,i la ( 1, 2, , )i m=  , calculate and store each order kernel 

function i 1 2( , , , )ih l l l  according to formula (6). Otherwise, 

proceed to the next step. 

3) Calculate the local gradient ( )l kδ and the network 

weight parameter correction
, ( )l jw k∆ .The formula is as 

follows: 

 ( ) ( ( ))
( )

l l l

E
k g V k

y k
δ ∂ ′ = −

∂                     

(8) 

 , ,( ) ( 1) ( ) ( )l j l j lw k w k k y kα ηδ∆ = ∆ − +             (9) 

Where: , ( 1)l jw kα∆ − is the introduced motion vector 

( 0 1α< < ); η  is the learning rate. 

6) Correct  the network weight and train the network again, 

then calculate the network output ( )y k  and the target error E , 

and repeat training until maxE E< (
maxE is set to 0.025 in this 

paper) is satisfied. 

7) Pred ict the wind power by using the Volterra-kernel 

functions. 

III SHORT-TERM WIND POWER FORECASTING BASED ON 

EEMD-VNN 

 This paper proposes a predictive combination model of 

wind power based on EEMD-VNN. 
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Fig. 2  Structure of the wind power prediction model based on EEMD-VNN 

 

Firstly, based on the largest Lyapunov exponent 

prediction, endpoint extension is utilized to eliminate the 

endpoint effect. Then the EEMD is used to decompose the new 

sequence obtaining IMF components of different scales and 

residual residuals, which realizes the smoothing of wind power 

signals. In this paper, the largest Lyapunov exponent is 

obtained by the small data volume method. Secondly, phase 

space reconstruction is performed for each component, and the 

appropriate number of truncated items and truncated order are 

selected to establish VNN neural network model for wind 

power prediction. Finally, the predicted values of the 

components are adaptively superimposed to obtain a final 

prediction value. The modeling process is shown in Figure 2. 

IV   ANALYSIS OF EXAMPLES 

IV.I Sample Treatment  
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Fig. 3 Time series of wind power 

The wind power data in this paper is from the continuous 

measurement data of 1440h from May 10th to July 8th of a 

wind turbine provided by a certain wind farm which contains 

58 G58-850 kW units with a total installed capacity of 49.3 

2018 China International Conference on Electricity Distribution Tianjin, 17-19 Sep. 2018

CICED2018      Paper No.201804270000409�       Page3/5 2101

javascript:showjdsw('showjd_0','j_0')


MW. The sampling period of the unit is 10min. For the 

convenience of research, the samples are averaged in hours, and 

a total of 1440 data are obtained after processing, as shown in 

Fig. 3.Take the first 1340 data as learning data, and the 

remain ing 100 data as test data. 

Following the prediction steps mentioned in this paper, a 

total of 9 IMFs (IMF1~IMF9) and one residual sequence 
10r are 

obtained, as shown in Fig. 4. （ r takes 100, α takes 0.25）  
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IV.II Evaluation Index  

In this paper, the performance indicators are: normalized 

absolute mean error
NMAEe , normalized root mean square error 

NRMAEe , maximum relat ive erro r 
MAEe and time cost 

MAXt to 

evaluate the performance of the model. The expressions of the 

four indicators are as follows: 
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Where： M is the number of pred icted points; capP is the rated 

capacity of the fan. The 
it is the optimal train ing time of the i th 

subsequence. 

IV.III Analysis o f Prediction  Result s 

The parameters of each sub-sequence VNN model are as 

shown in Table 1. In order to compare with the prediction 

performance of the EEMD-VNN model, this paper also  

performs predictive simulation  based on the other three models. 

The prediction results and errors of the four models are shown 

in Figure 5 and Figure 6 respectively; the prediction indicators 

are shown in Table 2 
TABLE I 

PARAMETERS OF SUBSEQUENCE COMPONENT 

SUB-SEQUENCES 
EMBEDDING 

DIMENSION m  
OPTIMAL DELAY τ  

IMF1 3 7 

IMF2 7 5 
IMF3 8 4 
IMF4 5 6 
IMF5 7 10 

IMF6 9 14 
IMF7 4 16 
IMF8 6 14 
IMF9 4 12 

9r  3 5 
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Fig.5  Comparison of actual wind power and the predicted results 
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Fig.6  Curves of wind power forecast error 
TABLE II 

COMPARED ERROR INDEXES OF THE FORTH MODELS 

PREDICTIVE 

MODELS 
ERROR INDEXES (%) 

eNMAE eNRMAE eMAE tMAX(s) 

VNN 6.916 9.538 23.8863 119.4849 

EEMD-VNN 2.98 3.524 6.0834 123.1993 
EEMD-LSSVM 3.78 4.365 7.4481 973.3573 

EEMD-WNN 5.719 6.619 11.5886 57.5786 

V CONCLUSION 

The nonlinear and non-stationary nature of wind power 

makes it difficu lt to achieve high-precision prediction with a 

single prediction method, but combined predict ion can 

integrate advantages and achieve satisfactory prediction results. 

As seen from Fig. 5, Fig. 6 and Table 2, all four models show 

good prediction results, but their predict ion performance is 

different. 
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(1) The EEMD is used to decompose the wind power t ime 

series after endpoint extension into sub-sequences at different 

time scales to achieve sequence smoothing and avoid distortion 

of sub-sequences, which provides a basis for further prediction. 

(2)The error index of the EEMD-WNN and the 

EEMD-LSSVM is higher than that of the EEMD-VNN. It is 

because that the combination of the Volterra functional model 

and the neural network not only overcomes the difficulty of 

solving Volterra h igh-order kernel functions, but also the order 

of kernel functions of each sub-sequence is completely  

determined by its own chaotic characteristics, thus avoiding 

blind selection. Thereby accurate modeling and high-precision 

prediction of nonlinear systems are realized  

(3) From the perspective of time cost, the EEMD-LSSVM 

is the longest because it needs to optimize the super parameter, 

while the EEMD-WNN takes the shortest time. The learn ing 

time of the EEMD-VNN and the VNN are almost the same, 

about twice that of the EEMD-WNN model, but much smaller 

than the EEMD-LSSVM model (the latter is 8 times that of the 

former). 

  In short, taking into account the prediction accuracy and 

cost time, it  can be seen that the EEMD-VNN model proposed 

in this paper has better prediction performance, time cost is 

more compromised, and engineering development potential is 

large. 
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