白巍, 张东磊, 付俭定, 夏清悦, 徐可馨. 基于DDPG的换流站融合终端任务卸载与资源调度方法[J]. 电力信息与通信技术, 2024, 22(3): 58-64. DOI: 10.16543/j.2095-641x.electric.power.ict.2024.03.09
引用本文: 白巍, 张东磊, 付俭定, 夏清悦, 徐可馨. 基于DDPG的换流站融合终端任务卸载与资源调度方法[J]. 电力信息与通信技术, 2024, 22(3): 58-64. DOI: 10.16543/j.2095-641x.electric.power.ict.2024.03.09
BAI Wei, ZHANG Donglei, FU Jianding, XIA Qingyue, XU Kexin. DDPG-based Task Offloading and Resource Scheduling Method for Converter Station Fusion Terminals[J]. Electric Power Information and Communication Technology, 2024, 22(3): 58-64. DOI: 10.16543/j.2095-641x.electric.power.ict.2024.03.09
Citation: BAI Wei, ZHANG Donglei, FU Jianding, XIA Qingyue, XU Kexin. DDPG-based Task Offloading and Resource Scheduling Method for Converter Station Fusion Terminals[J]. Electric Power Information and Communication Technology, 2024, 22(3): 58-64. DOI: 10.16543/j.2095-641x.electric.power.ict.2024.03.09

基于DDPG的换流站融合终端任务卸载与资源调度方法

DDPG-based Task Offloading and Resource Scheduling Method for Converter Station Fusion Terminals

  • 摘要: 随着电力数字化技术的快速发展,数字换流站作为电力系统的关键组成部分,面临着日益增加的计算压力。针对数字换流站中融合终端的计算业务需求,提出了一种云–边缘–本地三层计算卸载框架。考虑终端设备的移动性,文章以最小化系统总时延为目标,根据业务需求构建马尔科夫决策模型,采用基于深度确定性策略梯度算法的动态任务卸载优化方法实现对云–边–端三层的总体计算资源和网络资源的最优调度。通过搭建深度强化学习环境并仿真实验,结果表明,所提方案相比于边缘–本地双层卸载方案,系统总时延减少了29.6%。

     

    Abstract: With the rapid development of power digitalization technology, digital converter stations, as a key component of the power system, are facing increasing computational pressure. A cloud-edge-local three-tier computing offload framework is proposed for the computing service requirements of fusion terminals in digital converter stations. Considering the mobility of terminal devices, this paper aims to minimize the total system delay, constructs a Markov decision model according to business requirements, and adopts a dynamic task offloading optimization method based on deep deterministic policy gradient algorithm to achieve the optimal scheduling of overall computing resources and network resources at the cloud-edge-local layer. By building a deep reinforcement learning environment and simulating experiments, the results show that the proposed scheme reduces the total system delay by 29.6% compared with the edge-local two-layer offloading scheme.

     

/

返回文章
返回