罗先南, 周想凌, 杨爽, 刘峰. 基于图神经网络的网络切片时延预测研究[J]. 电力信息与通信技术, 2025, 1(1): 76-82. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.01.10
引用本文: 罗先南, 周想凌, 杨爽, 刘峰. 基于图神经网络的网络切片时延预测研究[J]. 电力信息与通信技术, 2025, 1(1): 76-82. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.01.10
LUO Xiannan, ZHOU Xiangling, YANG Shuang, LIU Feng. Network Slicing Latency Prediction Based on Graph Neural Network[J]. Electric Power Information and Communication Technology, 2025, 1(1): 76-82. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.01.10
Citation: LUO Xiannan, ZHOU Xiangling, YANG Shuang, LIU Feng. Network Slicing Latency Prediction Based on Graph Neural Network[J]. Electric Power Information and Communication Technology, 2025, 1(1): 76-82. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.01.10

基于图神经网络的网络切片时延预测研究

Network Slicing Latency Prediction Based on Graph Neural Network

  • 摘要: 网络切片的时延通常被视为比较不同网络切片资源分配方案的重要指标之一。然而,在真实网络中部署不同的切片方案并测量时延的成本过高。因此文章提出了基于图神经网络(graph neural network,GNN)和多头注意力机制(Multi-Head Attention Mechanism)的网络切片时延预测模型,该模型可以对现实中的网络进行机器学习建模,通过学习网络中节点的流量状态,使用基于多头注意力机制的增强GNN算法能得到网络切片的时延预测。实验结果表明,该模型可以适应切片和节点数量变化的动态场景,且预测结果具有较高的准确度,可以很好地应用于运营网络的监控与维护。

     

    Abstract: Network slicing latency is often considered as a key metric for comparing different network slicing resource allocation schemes. However, deploying different slicing schemes and measuring delay in real networks incurs prohibitively high costs. So we propose a model based on graph neural network (GNN) and multi-head attention mechanism to predict the network slicing latency. It can model the real network for machine learning, learn the traffic state of the nodes in the network, and obtain the network slicing latency by using the improved GNN algorithm with multi-head attention mechanism. The results show that the model can adapt to dynamic scenarios where the number of slices and nodes changes, and the prediction results have high accuracy, which proves that this model can be well applied to the monitoring and maintenance of operational networks.

     

/

返回文章
返回