葛磊蛟, 范延赫, 来金钢, 孙永辉, 张彦涛. 面向低碳经济的人工智能赋能微电网优化运行技术[J]. 高电压技术, 2023, 49(6): 2219-2238. DOI: 10.13336/j.1003-6520.hve.20230414
引用本文: 葛磊蛟, 范延赫, 来金钢, 孙永辉, 张彦涛. 面向低碳经济的人工智能赋能微电网优化运行技术[J]. 高电压技术, 2023, 49(6): 2219-2238. DOI: 10.13336/j.1003-6520.hve.20230414
GE Leijiao, FAN Yanhe, LAI Jingang, SUN Yonghui, ZHANG Yantao. Artificial Intelligence Enabled Microgrid Optimization Technology for Low Carbon Economy[J]. High Voltage Engineering, 2023, 49(6): 2219-2238. DOI: 10.13336/j.1003-6520.hve.20230414
Citation: GE Leijiao, FAN Yanhe, LAI Jingang, SUN Yonghui, ZHANG Yantao. Artificial Intelligence Enabled Microgrid Optimization Technology for Low Carbon Economy[J]. High Voltage Engineering, 2023, 49(6): 2219-2238. DOI: 10.13336/j.1003-6520.hve.20230414

面向低碳经济的人工智能赋能微电网优化运行技术

Artificial Intelligence Enabled Microgrid Optimization Technology for Low Carbon Economy

  • 摘要: 安全稳定高效、能量流动灵活、经济效益与环境效益兼顾等是微电网低碳经济运行的基础,然而随着多类型分布式电源、多利益主体的柔性负荷等接入微电网,以及“云计算–大数据–物联网–移动互联网–人工智能”技术广泛应用,微电网的组网模式、运行方式等正发生较大的改变。为此,梳理并归纳总结人工智能赋能微电网优化运行关键技术与挑战。首先,介绍微电网物理架构并总结智能化发展趋势,梳理微电网在低碳经济目标下的特点和优化运行所面临的挑战。其次,从决策变量、优化目标、约束条件和求解方法4个方面阐述人工智能赋能微电网优化运行原理。再次,聚焦于可再生能源出力预测技术、微电网优化调度技术、碳交易机制、人工智能深度融合下不确定调控技术等典型应用场景,分析并总结人工智能赋能微电网优化运行的应用效果。最后,总结分析了人工智能赋能微电网优化运行的未来发展方向,为绿色微电网技术发展提供借鉴。

     

    Abstract: Safety, stability and efficiency, flexible energy flow, and economic and environmental benefits are the basis of a microgrid's low-carbon economic operation, however, with access to multiple types of distributed power sources and flexible loads of multiple interests to the microgrid, the technology of "cloud computing+big data+internet of things+mobile internet+artificial intelligence" is extensively applied, and the network mode and operation of a microgrid are changing. To this end, the key technologies and challenges of AI-enabled microgrid operation are summarized and summarized. Firstly, we introduce the physical architecture of microgrids and summarize the development trend of intelligence, and then we discuss the characteristics of microgrids and the challenges of optimized operation under the goal of a low carbon economy. Secondly, the principles of AI-enabled smart microgrid optimization are explained in terms of decision variables, optimization objectives, constraints, and solution methods. Then, the application effects of AI-enabled microgrid optimization are analyzed and summarized by focusing on typical application scenarios such as renewable energy power forecasting technology, microgrid optimization scheduling technology, carbon trading mechanism and uncertain regulation technology under the deep integration of AI. Finally, the future development direction of AI-enabled microgrid optimization operation is summarized and analyzed to provide a reference for the development of green microgrid technology.

     

/

返回文章
返回