张姝, 王昊天, 董骁翀, 李玉容, 李烨, 王新迎, 孙英云. 基于深度学习的输电线路螺栓检测技术[J]. 电网技术, 2021, 45(7): 2821-2828. DOI: 10.13335/j.1000-3673.pst.2020.1336
引用本文: 张姝, 王昊天, 董骁翀, 李玉容, 李烨, 王新迎, 孙英云. 基于深度学习的输电线路螺栓检测技术[J]. 电网技术, 2021, 45(7): 2821-2828. DOI: 10.13335/j.1000-3673.pst.2020.1336
ZHANG Shu, WANG Haotian, DONG Xiaochong, LI Yurong, LI Ye, WANG Xinying, SUN Yingyun. Bolt Detection Technology of Transmission Lines Based on Deep Learning[J]. Power System Technology, 2021, 45(7): 2821-2828. DOI: 10.13335/j.1000-3673.pst.2020.1336
Citation: ZHANG Shu, WANG Haotian, DONG Xiaochong, LI Yurong, LI Ye, WANG Xinying, SUN Yingyun. Bolt Detection Technology of Transmission Lines Based on Deep Learning[J]. Power System Technology, 2021, 45(7): 2821-2828. DOI: 10.13335/j.1000-3673.pst.2020.1336

基于深度学习的输电线路螺栓检测技术

Bolt Detection Technology of Transmission Lines Based on Deep Learning

  • 摘要: 输电线路螺栓缺陷检测对电力系统安全可靠运行具有重要意义,但螺栓在巡检图像中具有特征不明显、尺寸小的特点,这给螺栓检测研究带来了一定挑战。随着直升机、无人机巡检技术和边缘计算的发展,传统巡检图像处理方法已满足不了实时检测的需求。针对上述问题,提出一种基于深度学习的输电线路螺栓检测系统。采用分级检测原则,首先利用SSD(single shot mutibox detector)算法定位存在缺陷螺栓的连接部位并切割出连接部位,增大螺栓在巡检图像中的占比,其次利用数据增强扩充数据集,最后利用YOLOv3算法检测缺陷螺栓。最终将边缘计算装置搭载在直升机、无人机上,实现输电线路螺栓缺陷实时检测。为验证该系统的鲁棒性,对不同光照强度下的巡检图像进行仿真。实验结果表明,该方法能够有效、精确地实现巡检图像中螺栓缺陷的实时检测。

     

    Abstract: The fault detection of the bolts on the transmission lines is of great significance to the safe and reliable operation of the power system. The bolts in the inspection images look unobvious in feature and small in size, which brings challenges to the research of their fault detection. With the development of helicopter and unmanned aerial vehicle inspection technology and the edge calculation, the traditional inspection image processing methods can no longer meet the needs of the real-time inspection. In this paper, a bolt fault detection system based on deep learning is proposed. Using the principle of hierarchical detection, the connection parts of the bolt fault are detected with single shot mutibox detector (SSD) firstly. Secondly, by cutting the other parts the proportion of bolts in the detection image increases and the data set is expanded with the data enhancement method. Finally, the Yolov3 is used to detect the bolt faults. The edge computing devices are mounted on helicopters or unmanned aerial vehicles to realize real-time detection of the bolt faults. The inspection images under different light intensities are detected to verify the robustness of the system. The experimental results show that this method can effectively and accurately detect the bolt faults in the inspection images.

     

/

返回文章
返回