赵旭, 奉有泉, 陶原, 邹昊东, 卢毅军. 基于计算流体力学的数据中心机器学习热模型数据增强技术[J]. 电力信息与通信技术, 2021, 19(4): 18-24. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.04.003
引用本文: 赵旭, 奉有泉, 陶原, 邹昊东, 卢毅军. 基于计算流体力学的数据中心机器学习热模型数据增强技术[J]. 电力信息与通信技术, 2021, 19(4): 18-24. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.04.003
ZHAO Xu, FENG Youquan, TAO Yuan, ZOU Haodong, LU Yijun. Data Augmentation with CFD to Enhance AI Thermal Management in Data Centers[J]. Electric Power Information and Communication Technology, 2021, 19(4): 18-24. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.04.003
Citation: ZHAO Xu, FENG Youquan, TAO Yuan, ZOU Haodong, LU Yijun. Data Augmentation with CFD to Enhance AI Thermal Management in Data Centers[J]. Electric Power Information and Communication Technology, 2021, 19(4): 18-24. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.04.003

基于计算流体力学的数据中心机器学习热模型数据增强技术

Data Augmentation with CFD to Enhance AI Thermal Management in Data Centers

  • 摘要: 基于人工智能的热模型可以有效地提升数据中心制冷能效比。受到机房实际采集数据的数量不足和覆盖范围不足的影响,使用实际采集数据集训练的热模型常常在准确度和泛化能力上存在不足。文章介绍了一种基于计算流体力学(Computational Fluid Dynamics,CFD)的人工合成数据增强技术,采用增强数据源对人工智能热模型的训练数据集进行补充。模拟场景下的实验结果显示CFD数据增强技术不仅能在实际采集数据量不足时提高模型准确度,减少预测误差,还能提升模型在实际采集数据无法覆盖工况下的性能。

     

    Abstract: AI thermal model can effectively improve the refrigeration energy efficiency ratio of data center. When applied in data centers, AI model is limited in accuracy and flexibility due to low volume and coverage of training samples collected from real world. A synthetic data enhancement technique based on computational fluid dynamics (Computational Fluid Dynamics, CFD) is introduced in this paper. The synthetic data is used as an augmentation over real-world dataset to train AI model for thermal management. Experimental results show that CFD data enhancement technology can not only improve the accuracy of the model, reduce the prediction error under insufficient data condition, but also improve the performance of the model under the condition that the actual data can not be covered.

     

/

返回文章
返回