姜华, 杨家伟, 黄巍, 黄成斌, 丛犁, 李思佳, 陈智雄. 基于深度强化学习的D2D辅助MEC网络资源分配算法[J]. 电力信息与通信技术, 2023, 21(7): 51-58. DOI: 10.16543/j.2095-641x.electric.power.ict.2023.07.07
引用本文: 姜华, 杨家伟, 黄巍, 黄成斌, 丛犁, 李思佳, 陈智雄. 基于深度强化学习的D2D辅助MEC网络资源分配算法[J]. 电力信息与通信技术, 2023, 21(7): 51-58. DOI: 10.16543/j.2095-641x.electric.power.ict.2023.07.07
JIANG Hua, YANG Jiawei, HUANG Wei, HUANG Chengbin, CONG Li, LI Sijia, CHEN Zhixiong. A D2D-assisted MEC Network Resource Allocation Algorithm Based on Deep Reinforcement Learning[J]. Electric Power Information and Communication Technology, 2023, 21(7): 51-58. DOI: 10.16543/j.2095-641x.electric.power.ict.2023.07.07
Citation: JIANG Hua, YANG Jiawei, HUANG Wei, HUANG Chengbin, CONG Li, LI Sijia, CHEN Zhixiong. A D2D-assisted MEC Network Resource Allocation Algorithm Based on Deep Reinforcement Learning[J]. Electric Power Information and Communication Technology, 2023, 21(7): 51-58. DOI: 10.16543/j.2095-641x.electric.power.ict.2023.07.07

基于深度强化学习的D2D辅助MEC网络资源分配算法

A D2D-assisted MEC Network Resource Allocation Algorithm Based on Deep Reinforcement Learning

  • 摘要: 利用多接入边缘计算(multi-access edge computing,MEC)和终端直传通信(Device to Device,D2D)技术,可以提升电力智能巡检中传感数据传输和处理的能力,但需要解决频谱复用和干扰条件下的网络资源优化分配问题。针对D2D辅助的MEC网络,文章提出了一种基于深度强化学习的资源联合优化分配算法。首先在频道复用与干扰、功率和计算等资源约束条件下,分析了D2D辅助的MEC网络的终端容量、功耗和时延计算方法;然后综合考虑吞吐量、功耗和时延等指标要求,建立了基于综合效益函数最大化的资源优化分配模型;最后采用深度强化学习算法实现任务卸载和资源分配的联合优化。仿真结果表明,该算法可有效提升系统容量和任务卸载的综合性能。

     

    Abstract: Multi-access edge computing (MEC) and device to device (D2D) technologies can be used to improve the capability of sensing data transmission and processing in power intelligent inspection. However, the problem of optimal allocation of network resources under spectrum reuse and interference should be solved. For D2D-assisted MEC networks, this paper proposes a joint optimal resource allocation algorithm based on deep reinforcement learning. Firstly, the terminal capacity, power consumption and delay calculation methods of D2D-assisted MEC networks are analyzed under the constraints of channel multiplexing and interference, power and computation. Secondly, considering the requirements of throughput, power consumption and delay, a resource optimal allocation model based on comprehensive utility function maximization is established. Deep reinforcement learning is used to realize the joint optimization of task offloading and resource allocation. Simulation results show that the proposed algorithm can effectively improve the comprehensive performance of system capacity and task offloading.

     

/

返回文章
返回