廖一帆, 武志刚. 基于迁移学习与Wasserstein生成对抗网络的静态电压稳定临界样本生成方法[J]. 电网技术, 2021, 45(9): 3722-3728. DOI: 10.13335/j.1000-3673.pst.2020.2110
引用本文: 廖一帆, 武志刚. 基于迁移学习与Wasserstein生成对抗网络的静态电压稳定临界样本生成方法[J]. 电网技术, 2021, 45(9): 3722-3728. DOI: 10.13335/j.1000-3673.pst.2020.2110
LIAO Yifan, WU Zhigang. Critical Sample Generation Method for Static Voltage Stability Based on Transfer Learning and Wasserstein Generative Adversarial Network[J]. Power System Technology, 2021, 45(9): 3722-3728. DOI: 10.13335/j.1000-3673.pst.2020.2110
Citation: LIAO Yifan, WU Zhigang. Critical Sample Generation Method for Static Voltage Stability Based on Transfer Learning and Wasserstein Generative Adversarial Network[J]. Power System Technology, 2021, 45(9): 3722-3728. DOI: 10.13335/j.1000-3673.pst.2020.2110

基于迁移学习与Wasserstein生成对抗网络的静态电压稳定临界样本生成方法

Critical Sample Generation Method for Static Voltage Stability Based on Transfer Learning and Wasserstein Generative Adversarial Network

  • 摘要: 静态电压稳定临界点在研究极限状态电力系统的传统分析方法与数据驱动方法中都有重要意义。电网新形势下,多次调用逐点法获取极限数据不再现实。提出一种基于深度学习的生成模型,用于静态电压稳定临界样本生成。首先,注意到临界样本是一种特殊的潮流样本,以非联络节点的电压作为样本的特征参量,可以解决样本的潮流不收敛与联络节点注入功率非零的问题;然后,建立与迁移学习结合的WGAN-GP模型,用于学习临界样本的特殊约束与分布;最后,选用样本的最小奇异值来表明生成样本的质量。算例研究结果表明,相较于直接使用WGAN-GP,与迁移学习结合能够更为有效地生成高质量的样本。

     

    Abstract: The static voltage stability critical point is of great significance to both the traditional analysis and the data-driven methods studying a power system in the ultimate states. Under the new situation of a power system, it is no longer practical to obtain the critical data by calling the point-by-point method iteratively. This paper proposes a generative model based on deep learning to realize the critical sample generation for the static voltage stability. Firstly, it is noticed that a critical sample is a special power flow sample. Setting the voltages on non-contact nodes as the features of the critical sample, the sample non-convergence of power flows and the non-zero injected power for the contact nodes are solved. Secondly, the Wasserstein generation adversarial network with gradient penalty combined with the transfer learning is established to learn the special constraints and distributions of the critical samples. Finally, the minimum singular value among the samples is selected to show the quality of the samples. The results of case study show that the combination of the WGAN-GP and the transfer learning is better in generating high quality samples than using the WGAN-GP alone.

     

/

返回文章
返回