周挺, 杨军, 詹祥澎, 裴洋舟, 张俊, 陈厚桂, 朱凤华. 一种数据驱动的暂态电压稳定评估方法及其可解释性研究[J]. 电网技术, 2021, 45(11): 4416-4425. DOI: 10.13335/j.1000-3673.pst.2020.2170
引用本文: 周挺, 杨军, 詹祥澎, 裴洋舟, 张俊, 陈厚桂, 朱凤华. 一种数据驱动的暂态电压稳定评估方法及其可解释性研究[J]. 电网技术, 2021, 45(11): 4416-4425. DOI: 10.13335/j.1000-3673.pst.2020.2170
ZHOU Ting, YANG Jun, ZHAN Xiangpeng, PEI Yangzhou, ZHANG Jun, CHEN Hougui, Fenghua ZHU. Data-driven Method and Interpretability Analysis for Transient Voltage Stability Assessment[J]. Power System Technology, 2021, 45(11): 4416-4425. DOI: 10.13335/j.1000-3673.pst.2020.2170
Citation: ZHOU Ting, YANG Jun, ZHAN Xiangpeng, PEI Yangzhou, ZHANG Jun, CHEN Hougui, Fenghua ZHU. Data-driven Method and Interpretability Analysis for Transient Voltage Stability Assessment[J]. Power System Technology, 2021, 45(11): 4416-4425. DOI: 10.13335/j.1000-3673.pst.2020.2170

一种数据驱动的暂态电压稳定评估方法及其可解释性研究

Data-driven Method and Interpretability Analysis for Transient Voltage Stability Assessment

  • 摘要: 将数据驱动方法用于电力系统暂态电压稳定评估可以较好地兼顾预测速度与准确性,但存在模型泛化能力不佳及可解释性差等问题。利用系统故障后采集的物理量作为输入特征,基于支持类别特征的梯度提升(gradient boosting with categorical features support,Catboost)算法构建暂态电压稳定评估模型。在模型训练中采用排序提升的方法避免预测偏移问题,提升准确性;使用对称决策树以提高计算效率;同时考虑数据的类别不平衡特性,采用代价敏感手段提高模型的分类性能。为了提高模型的可解释性,提出基于SHAP理论的暂态电压稳定评估归因分析框架,通过计算Shapley值的平均绝对值大小得到暂态电压稳定特征重要性排序,并根据每个特征的边际贡献,进一步量化不同输入特征对模型输出结果的影响。在新英格兰10机39节点系统上的测试结果表明,所提方法比其他机器学习算法具有更高的预测准确性与更快的预测速度,基于Shapley值的归因分析方法能够有效地解释输入特征对暂态电压稳定的影响以及机器学习模型对样本的预测结果。

     

    Abstract: Data-driven methods for the power system transient voltage stability assessment (TVSA) can give consideration to both the accuracy and the speed of prediction. But these methods exist some problems like poor generalization performance, weak interpretability, or else. Some physical quantities collected after the faults are selected as the input to establish the TVSA model based on the gradient boosting algorithm with categorical features support (Catboost). The ordered boosting method is proposed to avoid the prediction shift and increase the accuracy. The oblivious decision trees are adopted to improve the calculation efficiency. Meanwhile, the cost-sensitive strategy is applied to solve the problem of class imbalance. An attribution analysis framework for TVSA based on the SHAP theory is proposed in order to improve the interpretability. The importance ranking of the input features are carried out according to the average absolute value of the Shapley value. The effect of different features on the model's outputs are further quantified by the marginal contributions of the features. Case studies on the IEEE 39-bus system show that the proposed classifier has higher prediction accuracy and speed. The attribution analysis method based on the Shapley value is effective in illustrating the impact of different features on the transient voltage stability and the prediction results of the machine learning model.

     

/

返回文章
返回