刘韵艺, 汤渊, 苏盛, 吴裕宙, 王晓倩. 基于STL-Bayesian时空模型的分布式光伏系统异常检测[J]. 中国电力, 2024, 57(5): 222-231. DOI: 10.11930/j.issn.1004-9649.202305120
引用本文: 刘韵艺, 汤渊, 苏盛, 吴裕宙, 王晓倩. 基于STL-Bayesian时空模型的分布式光伏系统异常检测[J]. 中国电力, 2024, 57(5): 222-231. DOI: 10.11930/j.issn.1004-9649.202305120
LIU Yunyi, TANG Yuan, SU Sheng, WU Yuzhou, WANG Xiaoqian. Anomaly Detection for Distributed Photovoltaic Systems Based on STL-Bayesian Spatio-Temporal Model[J]. Electric Power, 2024, 57(5): 222-231. DOI: 10.11930/j.issn.1004-9649.202305120
Citation: LIU Yunyi, TANG Yuan, SU Sheng, WU Yuzhou, WANG Xiaoqian. Anomaly Detection for Distributed Photovoltaic Systems Based on STL-Bayesian Spatio-Temporal Model[J]. Electric Power, 2024, 57(5): 222-231. DOI: 10.11930/j.issn.1004-9649.202305120

基于STL-Bayesian时空模型的分布式光伏系统异常检测

Anomaly Detection for Distributed Photovoltaic Systems Based on STL-Bayesian Spatio-Temporal Model

  • 摘要: 分布式光伏发电系统一般不配备多种类的传感器和监测设备,反映设备运行状态且可用于异常检测的数据有限。提出了基于STL-Bayesian时空模型的光伏异常状态检测方法,利用气象在时空上的传递性,挖掘光伏发电出力的关联性进而完成异常检测。首先,用季节性分解(seasonal and trend decomposition using loess,STL)将光伏发电有功功率时序数据分解为3个分量;然后,研究不同长度数据输入对分解结果的影响和区域内分量的时空分布特性;接着,通过构建贝叶斯模型分别对趋势分量和剩余分量做短期和超短期空间插值,得到区域内光伏出力;最后,计算真实值与回归值的推土机距离(earth move's distance,EMD)用于检测异常状态。算例分析表明,所提模型在分布式光伏场景检测可逆异常和不可逆异常状态均有较高准确率。

     

    Abstract: Distributed photovoltaic (PV) power generation systems generally do not come equipped with a variety of sensors and monitoring devices, limiting the data available for reflecting equipment operation and conducting anomaly detection. This article proposes a PV anomaly detection method based on the STL-Bayesian spatio-temporal model, which utilizes the spatio-temporal transferability of meteorological data to uncover the correlation of PV power output and perform anomaly detection. Firstly, the seasonal and trend decomposition using Loess (STL) is employed to decompose the PV active power time series data into three components. Then, the influence of different lengths of input data on the decomposition results and the spatio-temporal distribution characteristics of the components within the region are investigated. Subsequently, Bayesian models are constructed to perform short-term and ultra-short-term spatial interpolation on the trend component and the residual component, respectively, so as to obtain the PV output within the region. Finally, the earth move's distance (EMD) between the actual values and regression values is calculated to detect abnormal states. The analysis of the algorithm shows that the model has a high accuracy in the detection of both reversible and irreversible anomalies under distributed PV scenarios.

     

/

返回文章
返回