顾雪平, 周光奇, 李少岩, 王璞诗. 考虑风电预测误差相关性的负荷恢复鲁棒优化[J]. 电网技术, 2021, 45(10): 4092-4103. DOI: 10.13335/j.1000-3673.pst.2020.2102
引用本文: 顾雪平, 周光奇, 李少岩, 王璞诗. 考虑风电预测误差相关性的负荷恢复鲁棒优化[J]. 电网技术, 2021, 45(10): 4092-4103. DOI: 10.13335/j.1000-3673.pst.2020.2102
GU Xueping, ZHOU Guangqi, LI Shaoyan, WANG Pushi. Robust Optimization of Load Restoration Scheme Considering Wind Power Prediction Error Correlation[J]. Power System Technology, 2021, 45(10): 4092-4103. DOI: 10.13335/j.1000-3673.pst.2020.2102
Citation: GU Xueping, ZHOU Guangqi, LI Shaoyan, WANG Pushi. Robust Optimization of Load Restoration Scheme Considering Wind Power Prediction Error Correlation[J]. Power System Technology, 2021, 45(10): 4092-4103. DOI: 10.13335/j.1000-3673.pst.2020.2102

考虑风电预测误差相关性的负荷恢复鲁棒优化

Robust Optimization of Load Restoration Scheme Considering Wind Power Prediction Error Correlation

  • 摘要: 为应对负荷恢复过程中源荷双重不确定性,建立了负荷恢复鲁棒优化模型。应用近似线性化潮流方法对模型进行线性化处理,并基于解耦思想将原模型分解为预测场景下的方案优化主问题和误差场景下的方案校核子问题。主问题以预测场景下加权负荷恢复量最大化为目标函数,进行风电接入和负荷恢复方案最优决策;基于主问题的决策结果,子问题引入松弛变量,构建计及预测误差不确定性的max-min双层方案可行性校核优化模型,并以可调盒式集合刻画负荷预测误差,以线性多面体集合描述具有相关性的风电预测误差。在求解过程中,利用线性优化强对偶理论将max-min结构的子问题对偶转化,并引入大M法线性化所得对偶模型,然后采用列与约束生成算法进行主、子问题高效迭代求解。算例结果验证鲁棒优化模型和迭代求解方法的有效性和可行性。

     

    Abstract: To deal with the double uncertainty of the source and load during the load restoration process, a robust optimization model is established. The linear-programming approximation of AC power flow (LPAC) is applied to linearize the original model. Then, based on the decoupling idea, the original model is decomposed into a main problem in the prediction scenario and a sub-problem in the error scenarios. The main problem determines the optimal restoration scheme to maximize the weighted load restoration amount. By introducing the slack variables, the scheme verification sub-problem considering the uncertainty of the prediction errors is transformed into an optimization model with a max-min structure. The load forecast error and the wind power forecast error are described by the adjustable box set and the linear polyhedron set respectively. In the solving process, the strong duality theory is used to transform the sub-problem with the max-min structure into the dual model, and the big M method is introduced to linearize the dual model obtained. And then, the column-and-constraint generation algorithm is utilized to efficiently solve the main and sub-problems iteratively. The numerical results of case system verify the effectiveness and feasibility of the proposed model and method.

     

/

返回文章
返回