吴铭, 沈瑞强, 袁三男. 基于变步长匹配追踪的G3-PLC系统信道估计算法[J]. 电力信息与通信技术, 2024, 22(7): 82-87. DOI: 10.16543/j.2095-641x.electric.power.ict.2024.07.11
引用本文: 吴铭, 沈瑞强, 袁三男. 基于变步长匹配追踪的G3-PLC系统信道估计算法[J]. 电力信息与通信技术, 2024, 22(7): 82-87. DOI: 10.16543/j.2095-641x.electric.power.ict.2024.07.11
WU Ming, SHEN Ruiqiang, YUAN Sannan. Channel Estimation Algorithm for G3-PLC Systems Based on Variable Step Size Matching Pursuit[J]. Electric Power Information and Communication Technology, 2024, 22(7): 82-87. DOI: 10.16543/j.2095-641x.electric.power.ict.2024.07.11
Citation: WU Ming, SHEN Ruiqiang, YUAN Sannan. Channel Estimation Algorithm for G3-PLC Systems Based on Variable Step Size Matching Pursuit[J]. Electric Power Information and Communication Technology, 2024, 22(7): 82-87. DOI: 10.16543/j.2095-641x.electric.power.ict.2024.07.11

基于变步长匹配追踪的G3-PLC系统信道估计算法

Channel Estimation Algorithm for G3-PLC Systems Based on Variable Step Size Matching Pursuit

  • 摘要: 为合理利用电力线信道的稀疏特性,提高G3-PLC系统通信的可靠性,基于压缩感知(compressed sensing,CS)理论,提出一种稀疏度自适应的变步长前向后向匹配追踪(sparsity adaptive variable step size forward-backward pursuit,SA-VSSFBP)算法。该算法在前向后向匹配追踪算法(forward-backward pursuit,FBP)的基础上引入变步长自适应的思想,于迭代初期选择大步长以减小迭代次数,迭代后期使用小步长获得精确估计。同时利用原子匹配度测试进行稀疏度预估计,确保逼近真实稀疏度的前提下,加快迭代速度,减少算法运行的时间。仿真实验结果表明,对比传统的信道估计方式,压缩感知信道估计方式具有更优越的性能,且相较于正交匹配追踪算法(orthogonal matching pursuit,OMP)与FBP的压缩感知信道估计算法,文章提出的算法能够在保证精度与步长为1的FBP相当的情况下算法效率分别能够提升24.14%和47.2%。

     

    Abstract: In order to leverage the sparse characteristics of power line communication channel and improve the reliability of G3-PLC system communication, this paper proposes a sparsity adaptive variable step size forward-backward pursuit (SA-VSSFBP) algorithm based on the theory of compressed sensing (CS). This algorithm builds upon the forward-backward pursuit (FBP) algorithm and introduces the concept of variable step size with adaptivity. It employs a large step size in the initial iterations to reduce the number of iterations, and a small step size in the later iterations to obtain accurate estimates. Additionally, the atomic matching test is utilized for sparsity pre-estimation to ensure the approximation of the real sparsity, speed up the iteration speed and reduce the running time of the algorithm. The simulation results show that: compared with the traditional channel estimation method, the compressed sensing channel estimation method has superior performance; and compared with the orthogonal matching pursuit (OMP) and FBP compressed sensing channel estimation algorithms, the algorithm proposed in this paper is able to improve 24.14% and 47.2% of the efficiency of the algorithm in the case of guaranteeing that the accuracy is comparable to that of the FBP with the step size of 1.

     

/

返回文章
返回