杨栋, 朵文博, 李帅兵, 李天耕, 康永强, 鲁怀伟. 基于改进YOLOv8的电缆复合绝缘结构内部缺陷太赫兹成像识别方法[J]. 高电压技术, 2024, 50(9): 4142-4151. DOI: 10.13336/j.1003-6520.hve.20240265
引用本文: 杨栋, 朵文博, 李帅兵, 李天耕, 康永强, 鲁怀伟. 基于改进YOLOv8的电缆复合绝缘结构内部缺陷太赫兹成像识别方法[J]. 高电压技术, 2024, 50(9): 4142-4151. DOI: 10.13336/j.1003-6520.hve.20240265
YANG Dong, DUO Wenbo, LI Shuaibing, LI Tiangeng, KANG Yongqiang, LU Huaiwei. Terahertz Imaging Recognition Method for Internal Defects in Cable Composite Insulation Structure Based on Improved YOLOv8[J]. High Voltage Engineering, 2024, 50(9): 4142-4151. DOI: 10.13336/j.1003-6520.hve.20240265
Citation: YANG Dong, DUO Wenbo, LI Shuaibing, LI Tiangeng, KANG Yongqiang, LU Huaiwei. Terahertz Imaging Recognition Method for Internal Defects in Cable Composite Insulation Structure Based on Improved YOLOv8[J]. High Voltage Engineering, 2024, 50(9): 4142-4151. DOI: 10.13336/j.1003-6520.hve.20240265

基于改进YOLOv8的电缆复合绝缘结构内部缺陷太赫兹成像识别方法

Terahertz Imaging Recognition Method for Internal Defects in Cable Composite Insulation Structure Based on Improved YOLOv8

  • 摘要: 电缆及其附件在制造和运行过程中容易产生内部缺陷,严重危害供电系统的安全。针对传统电缆复合绝缘结构内部缺陷检测方法的局限性,提出一种基于太赫兹时域光谱成像的目标识别检测方法。以交联聚乙烯电缆接头为研究对象,首先通过等效简化,制作了含分层与金属杂质缺陷的电缆接头等效试验模型;然后分别对含缺陷的人工模型进行太赫兹频域成像和吸收谱成像检测,得到了相应的成像结果;最后,基于上述成像结果,采用改进型YOLOv8模型对不同缺陷图像进行分类识别,结果显示改进后的YOLOv8对电缆接头内部缺陷的检测精确度达到99.8%,联合交叉为0.5时的平均精确度达到99.5%,结果相较于传统方法显著提升。该文所提方法有助于将太赫兹检测技术和目标检测算法推广到对电缆复合绝缘结构内部缺陷的无损可视化检测,可有效辨别电缆复合绝缘内部存在缺陷类型和位置,并可推广至其他层状复合绝缘结构的内部缺陷检测。

     

    Abstract: Cables and their accessories are susceptible to internal defects during manufacturing and operation, posing significant risks to the safety of a power supply system. We introduced a novel target recognition detection method utilizing terahertz time-domain spectral imaging to overcome the limitations of conventional approaches in detecting internal defects within cable composite insulation structures. Focusing on cross-linked polyethylene cable joints, we created an experimental model simulating joints with layering and metal impurities through equivalent simplification. The Terahertz frequency domain imaging and absorption spectrum imaging were conducted on the artificial model with defects, yielding corresponding imaging outcomes. Subsequently, an improved YOLOv8 model was employed to classify and recognize various defect images based on the acquired imaging data. The enhanced YOLOv8 model achieved an impressive 99.8% accuracy in detecting internal defects in cable joints, with an average accuracy of 99.5% at a joint crossover of 0.5, demonstrating substantial advancements over traditional methods. This methodology extends the application of Terahertz detection technology and object detection algorithms to non-destructive visual inspection of internal defects within cable composite insulation structures. It is revealed that the defect types and locations within cable composite insulation can be effectively identified and the method can be extended to the detection of internal defects in various layered composite insulation structures.

     

/

返回文章
返回