王佳琪, 俞灵, 夏文岳, 冯琼, 武书舟, 陈郑平, 范海威, 吴炜. 基于ERNIE-IDCNN-CRF模型的电网调度领域命名实体识别方法[J]. 电力信息与通信技术, 2022, 20(10): 1-8. DOI: 10.16543/j.2095-641x.electric.power.ict.2022.10.001
引用本文: 王佳琪, 俞灵, 夏文岳, 冯琼, 武书舟, 陈郑平, 范海威, 吴炜. 基于ERNIE-IDCNN-CRF模型的电网调度领域命名实体识别方法[J]. 电力信息与通信技术, 2022, 20(10): 1-8. DOI: 10.16543/j.2095-641x.electric.power.ict.2022.10.001
WANG Jiaqi, YU Ling, XIA Wenyue, FENG Qiong, WU Shuzhou, CHEN Zhengping, FAN Haiwei, WU Wei. Named Entity Recognition Method for Power Grid Dispatching Field Based on ERNIE-IDCNN-CRF Model[J]. Electric Power Information and Communication Technology, 2022, 20(10): 1-8. DOI: 10.16543/j.2095-641x.electric.power.ict.2022.10.001
Citation: WANG Jiaqi, YU Ling, XIA Wenyue, FENG Qiong, WU Shuzhou, CHEN Zhengping, FAN Haiwei, WU Wei. Named Entity Recognition Method for Power Grid Dispatching Field Based on ERNIE-IDCNN-CRF Model[J]. Electric Power Information and Communication Technology, 2022, 20(10): 1-8. DOI: 10.16543/j.2095-641x.electric.power.ict.2022.10.001

基于ERNIE-IDCNN-CRF模型的电网调度领域命名实体识别方法

Named Entity Recognition Method for Power Grid Dispatching Field Based on ERNIE-IDCNN-CRF Model

  • 摘要: 电力调度运行系统存在大量复杂数据,构建电网调度领域知识图谱是解决数据关联性缺失、附加值低的重要手段,而电网调度领域命名实体识别是构建领域知识图谱的基础任务之一。针对通用领域命名实体识别方法在电网调控领域适用性差、模型训练速度慢的问题,文章提出基于知识增强的预训练语义表示模型–膨胀卷积神经网络–条件随机场模型(enhanced representation through knowledge integration-iterated dilated convolutional neural network-conditional random field,ERNIE-IDCNN-CRF)的电网调度领域命名实体识别方法,该方法对字、短语、实体等信息进行统一建模,引入多源异构数据知识生成语义向量,实现模型语义表现能力的明显增强。实验结果表明,针对电力调度语料库,该方法的训练速度得到明显提升,电网调度领域实体的F1值达到85.09%,可有效识别出电网调度领域实体。

     

    Abstract: There are a lot of complex data in the power dispatching operation system. Building the knowledge graph of power grid dispatching field is an important means to solve the lack of data relevance and low added value, and the named entity recognition of power grid dispatching field is one of the basic tasks of building the knowledge graph of power grid dispatching field. Aiming at the problems of poor applicability and slow model training speed of general domain named entity recognition method in the field of power grid regulation, this paper proposes a named entity recognition method in the field of power grid dispatching based on ERNIE-IDCNN-CRF model. This method establishes a unified model of words, phrases, entities and other information, introduces multi-source heterogeneous data knowledge to generate semantic vectors, and significantly enhances the semantic expression ability of the model. The experimental results show that the training speed of this method is significantly improved for the power dispatching corpus, and the F1 value of the entities in the power grid dispatching field reaches 85.09%, which can effectively identify the entities in the power grid dispatching field.

     

/

返回文章
返回