刘思楠, 张力为, 甘满光, 雷宏武, 方志明, 王燕, 付晓娟, 季备, 姚志勇. 地质封存环境CO2压力影响水泥碳化程度的试验研究[J]. 中国电机工程学报, 2022, 42(9): 3126-3134. DOI: 10.13334/j.0258-8013.pcsee.211706
引用本文: 刘思楠, 张力为, 甘满光, 雷宏武, 方志明, 王燕, 付晓娟, 季备, 姚志勇. 地质封存环境CO2压力影响水泥碳化程度的试验研究[J]. 中国电机工程学报, 2022, 42(9): 3126-3134. DOI: 10.13334/j.0258-8013.pcsee.211706
LIU Sinan, ZHANG Liwei, GAN Manguang, LEI Hongwu, FANG Zhiming, WANG Yan, FU Xiaojuan, JI Bei, YAO Zhiyong. Experimental Study of the Effect of CO2 Pressure on the Degree of Cement Carbonation Under Geologic CO2 Storage Environment[J]. Proceedings of the CSEE, 2022, 42(9): 3126-3134. DOI: 10.13334/j.0258-8013.pcsee.211706
Citation: LIU Sinan, ZHANG Liwei, GAN Manguang, LEI Hongwu, FANG Zhiming, WANG Yan, FU Xiaojuan, JI Bei, YAO Zhiyong. Experimental Study of the Effect of CO2 Pressure on the Degree of Cement Carbonation Under Geologic CO2 Storage Environment[J]. Proceedings of the CSEE, 2022, 42(9): 3126-3134. DOI: 10.13334/j.0258-8013.pcsee.211706

地质封存环境CO2压力影响水泥碳化程度的试验研究

Experimental Study of the Effect of CO2 Pressure on the Degree of Cement Carbonation Under Geologic CO2 Storage Environment

  • 摘要: 为研究封存在地下储层中的CO2与井筒水泥和地下混凝土构筑物接触后引发碳化反应的剧烈程度,将普通硅酸盐水泥和G级油井水泥样品与不同浓度的CO2进行反应,利用微米CT、X射线衍射仪(X-ray diffraction,XRD)等分析手段,研究水泥与CO2反应后微观结构、矿物组分及含量的变化。试验结果表明,水泥的碳化速率先增大后减小;CO2浓度越高,反应生成的方解石越多;方解石沉淀后形成致密壳状结构。通过Elovich方程拟合试验数据,预测得到100天后3组水泥样品的碳化深度分别为0.51 mm、2.06 mm和0.81 mm。综上所述,水泥的碳化反应主要是钙基水泥水化物转化为方解石,G级油井水泥抗CO2腐蚀性优于普通硅酸盐水泥。研究成果增进了人们对水泥与高浓度CO2反应机理的认识,可为相关工程的水泥服役性能评价提供参考依据。

     

    Abstract: The CO2 stored in the underground reservoir may contact wellbores and underground concrete structures, causing carbonation reaction. To understand the severity of the carbonation reaction between CO2 and wellbore cement/ concrete, ordinary Portland cement and class G oil well cement samples were used to react with different concentrations of CO2. Micro-CT and XRD were used to study the changes in microstructure and mineral compositions of the cement after the reaction with CO2. The test results show that the carbonation rate first increases and then decreases. The higher the CO2 concentration, the more the calcite can be produced by the reaction. The Elovich equation was applied to fit the test data, and the data-fitting results predict that the long-term carbonation depths of Group 1, 2 and 3 samples after 100 days reaction will be 0.51 mm, 2.06 mm and 0.81 mm, respectively. In summary, the carbonation reaction of cement is mainly the conversion of calcium-based cement hydrates into calcite, and Class G oil well cement has better CO2 corrosion resistance than ordinary Portland cement. The research results improve people's understanding of the reaction mechanism between cement and high-concentration CO2, and can provide a reference for the evaluation of cement service performance in related projects.

     

/

返回文章
返回