李金蓉, 邓先红, 张乐, 陈浩森, 段忠平, 郝文杰, 于大鹏. 基于SOM神经网络应急柴油发电机组故障诊断研究[J]. 核科学与工程, 2022, 42(5): 1152-1157.
引用本文: 李金蓉, 邓先红, 张乐, 陈浩森, 段忠平, 郝文杰, 于大鹏. 基于SOM神经网络应急柴油发电机组故障诊断研究[J]. 核科学与工程, 2022, 42(5): 1152-1157.
LI Jinrong, DENG Xianhong, ZHANG Le, CHEN Haosen, DUAN Zhongping, HAO Wenjie, YU Dapeng. Study on Fault Diagnosis of EDGs based on SOM Neural Network[J]. Chinese Journal of Nuclear Science and Engineering, 2022, 42(5): 1152-1157.
Citation: LI Jinrong, DENG Xianhong, ZHANG Le, CHEN Haosen, DUAN Zhongping, HAO Wenjie, YU Dapeng. Study on Fault Diagnosis of EDGs based on SOM Neural Network[J]. Chinese Journal of Nuclear Science and Engineering, 2022, 42(5): 1152-1157.

基于SOM神经网络应急柴油发电机组故障诊断研究

Study on Fault Diagnosis of EDGs based on SOM Neural Network

  • 摘要: 应急柴油发电机组是核电厂安全相关的重要设备,及时准确的故障诊断确保应急柴油发电机组能够正常运行对核安全有着重要的意义。本文梳理核电应急柴油发电机组故障种类,总结故障集、参数集、故障特征数据,利用MATLAB神经网络工具箱建立SOM神经网络实现应急柴油发电机组故障类型的聚类和仿真,准确诊断某时刻应急柴油发电机组出现的单一故障及双重故障。仿真结果表明:SOM神经网络具有故障识别能力,但在对出现两种或两种以上故障诊断过程需要重新建立故障样本,操作比较繁琐,不具备实际操作性,后续对复合神经网络的故障诊断进行研究,保持SOM神经网络诊断准确性的同时兼顾可操作性。

     

    Abstract: EDGs are important equipment related to the safety of nuclear power plant. The timely and accurate fault diagnosis to ensure the normal operation of EDGs is of grea t significance to nuclear safety. In this paper, the fault types of nuclear EDGs are sorted out, the fault sets, parameter sets and fault characteristic data are summarized, and the SOM neural network is established by using the MATLAB neural network toolbox to realize the clustering and simulation of the fault types of EDGs, so as to accurately diagnose the single and double faults of EDGs at certain time. The simulation results show that the SOM neural network have fault identification ability, but new fault samples are needed to build up on two or more fault diagnosis process, which are more complicated, and does not have actual operation. Then the fault diagnosis of compound neural network is studied. The accuracy of SOM neural network diagnosis is maintained while the operability is taken into account.

     

/

返回文章
返回