姚建凡, 彭思涛, 何道敬, 徐智, 谢锡耀, 黄杰, 位金锋. 基于分层神经网络的压水堆堆芯换料关键参数的预测方法研究[J]. 核科学与工程, 2024, 44(3): 564-571.
引用本文: 姚建凡, 彭思涛, 何道敬, 徐智, 谢锡耀, 黄杰, 位金锋. 基于分层神经网络的压水堆堆芯换料关键参数的预测方法研究[J]. 核科学与工程, 2024, 44(3): 564-571.
YAO Jianfan, PENG Sitao, HE Daojing, XU Zhi, XIE Xiyao, HUANG Jie, WEI Jinfeng. Study on the Prediction Method of Key Parameters of Pressurized Water Reactor Core Refueling Based on the Hierarchical Neural Network[J]. Chinese Journal of Nuclear Science and Engineering, 2024, 44(3): 564-571.
Citation: YAO Jianfan, PENG Sitao, HE Daojing, XU Zhi, XIE Xiyao, HUANG Jie, WEI Jinfeng. Study on the Prediction Method of Key Parameters of Pressurized Water Reactor Core Refueling Based on the Hierarchical Neural Network[J]. Chinese Journal of Nuclear Science and Engineering, 2024, 44(3): 564-571.

基于分层神经网络的压水堆堆芯换料关键参数的预测方法研究

Study on the Prediction Method of Key Parameters of Pressurized Water Reactor Core Refueling Based on the Hierarchical Neural Network

  • 摘要: 压水堆堆芯换料方案的选择直接关系到核电厂运行的安全性和经济性,是一项费时费力的工作。为高效准确地选取可行的堆芯换料方案,本文提出了分层神经网络模型来预测堆芯换料方案的关键参数:循环长度和最大焓升因子。本方法设计了双层隐藏层网络结构,通过选取合适的权重初始化方法、激活函数、自适应学习率和优化器等,学习大量的工程换料数据获取堆芯关键参数预测模型。本文所提方法分开学习关键参数特征,避免相互干扰学习,从而提高了模型整体预测精度。数值实验也表明,本方法比经典深度神经网络模型(DNN)具有更高的预测精度和更强的鲁棒性,且在不同类型的新组件布局上同样具有准确的预测能力。

     

    Abstract: The selection of the pressurized water reactor core refueling scheme is directly related to the safety and economy of nuclear power plant operation, which is a time-consuming and laborious work. In order to efficiently and accurately select feasible core loading schemes, a layered neural network model is proposed to predict the key parameters of the core loading scheme, namely the cycle length and maximum enthalpy rise factor. Our proposed method designs a double-layer hidden layer network structure. By selecting the appropriate weight initialization method, activation function, adaptive learning rate and optimizer, a large amount of engineering refueling data is learned to obtain the core key parameter prediction model. Our proposed method learns key parameter features separately and avoids mutual interference learning, thus improving the overall prediction accuracy of the model. Numerical experiments also show that our proposed method has higher prediction accuracy and stronger robustness than the classical DNN neural network model, and the layered neural network model also has accurate prediction ability on different types of data.

     

/

返回文章
返回