肖盾, 曾文杰, 于涛, 李松发, 雷鸣, 邓云李, 蔡文超, 赵鹏, 潘瑞安. 基于BP神经网络PID的研究堆堆芯功率控制研究[J]. 核科学与工程, 2022, 42(4): 744-750.
引用本文: 肖盾, 曾文杰, 于涛, 李松发, 雷鸣, 邓云李, 蔡文超, 赵鹏, 潘瑞安. 基于BP神经网络PID的研究堆堆芯功率控制研究[J]. 核科学与工程, 2022, 42(4): 744-750.
XIAO Dun, ZENG Wenjie, YU Tao, LI Songfa, LEI Ming, DENG Yunli, CAI Wenchao, ZHAO Peng, PAN Ruian. Research on Core Power Control of Research Reactor based on BP Neural Network PID Controller[J]. Chinese Journal of Nuclear Science and Engineering, 2022, 42(4): 744-750.
Citation: XIAO Dun, ZENG Wenjie, YU Tao, LI Songfa, LEI Ming, DENG Yunli, CAI Wenchao, ZHAO Peng, PAN Ruian. Research on Core Power Control of Research Reactor based on BP Neural Network PID Controller[J]. Chinese Journal of Nuclear Science and Engineering, 2022, 42(4): 744-750.

基于BP神经网络PID的研究堆堆芯功率控制研究

Research on Core Power Control of Research Reactor based on BP Neural Network PID Controller

  • 摘要: 为了实现PID控制器参数的在线调节,利用BP神经网络的自适应能力,对PID参数进行实时整定,设计BP神经网络PID控制器。基于研究堆堆芯传递函数模型,结合堆芯控制系统设计原理,建立研究堆堆芯功率BP神经网络PID控制系统,开展堆芯动态仿真研究。结果表明,与传统PID控制器相比,BP神经网络PID控制器具有超调量小、响应快等特点,控制效果更佳,适用于研究堆堆芯功率控制。

     

    Abstract: In order to realize the on-line adjustment of PID controller parameters, the BP neural network PID controller is designed to adjust the PID parameters in real time, by using the adaptive self-learning ability of the BP neural network. Based on the state space model of the research reactor core and the design principle of the reactor core control system, the BP neural network PID control system of the research reactor core power is established, and the core dynamic simulation is carried out. The results show that compared with the traditional PID controller, the BP neural network PID controller has the characteristics of small overshoot, fast response and better control effect, which is suitable for research reactor core power control.

     

/

返回文章
返回