斯俊平, 赵文斌, 孙胜, 黄岗, 张亮, 张文龙, 许怡幸, 刘洋. 稳态考验回路换热系统热工优化设计研究[J]. 核科学与工程, 2022, 42(3): 549-559.
引用本文: 斯俊平, 赵文斌, 孙胜, 黄岗, 张亮, 张文龙, 许怡幸, 刘洋. 稳态考验回路换热系统热工优化设计研究[J]. 核科学与工程, 2022, 42(3): 549-559.
SI Junping, ZHAO Wenbin, SUN Sheng, HUANG Gang, ZHANG Liang, ZHANG Wenlong, XU Yixing, LIU Yang. Thermal Optimization Strategies for the Heat Exchange System in the Steady-State Irradiation Test Loop[J]. Chinese Journal of Nuclear Science and Engineering, 2022, 42(3): 549-559.
Citation: SI Junping, ZHAO Wenbin, SUN Sheng, HUANG Gang, ZHANG Liang, ZHANG Wenlong, XU Yixing, LIU Yang. Thermal Optimization Strategies for the Heat Exchange System in the Steady-State Irradiation Test Loop[J]. Chinese Journal of Nuclear Science and Engineering, 2022, 42(3): 549-559.

稳态考验回路换热系统热工优化设计研究

Thermal Optimization Strategies for the Heat Exchange System in the Steady-State Irradiation Test Loop

  • 摘要: 为了验证新型燃料组件在设计上的合理性以及制造上的可靠性,需在高温高压水试验回路中针对燃料组件开展稳态辐照考验。本文结合燃料组件辐照考验参数需求,以再生式换热器作为稳态考验高温高压水试验回路的换热系统,从再生段结构、换热面积裕量以及多台换热器连接方式等方面,开展了针对稳态考验回路换热系统的热工优化设计研究。研究表明,在再生段结构及换热面积恒定下,无论采用何流量和温度作为设计基准来设计换热器结构,该结构换热器对低参数状态下的换热能力改进均无显著作用。在再生段内设置一次水旁流短接管对提升换热器在低参数下的换热功率有明显效果,在210℃一次水入口温度时,再生段换热面积缩减30%可以有效提升25.6%的换热功率。基于设计工况下保留的换热面积裕量,一次水运行温度较设计温度降低将会增强换热面积裕量对换热功率的补偿作用,而一次水运行流量较设计流量下降将会削弱换热面积裕量对换热功率的补偿作用。基于宽范围功率需求,燃料组件稳态考验回路中换热系统宜设计成串并联可切换模式,在一次水入口温度为250℃及330℃时,总流量为40%的两台换热器在串联时的最大换热功率较单台分别提升了81%和77%。

     

    Abstract: In order to verify the design rationality and manufacturing reliability, it is necessary to carry out the steady-state irradiation test for a new fuel assembly in the high temperature and high pressure water test loop. Thermal optimization strategies to satisfy the requirements of fuel assembly radiation test parameters for the heat exchange system as the regenerative heat exchanger in the steady-state irradiation test loop were studied, including regeneration section structure improvement, heat exchange area margin selection and multiple heat exchanger connection mode. It shows that there is no significant effect on improvement of the heat exchange capacity under low parameters with the constant regeneration section structure and heat exchange area, no matter what flow rate and temperature of the primary water are used. It has an obvious effect on increasing the heat exchange power of the heat exchanger at low parameters that short-circuited water bypass pipes in the regeneration section are set. The heat exchange area with a reduction of 30% in the regeneration section can effectively increase the heat exchange power by 25.6%. With the remaining heat exchange area margin under the initial design conditions, compared to that in the design condition, the decrease in the primary water operating temperature will enhance the compensation effect of the heat exchange area margin on the heat exchange power, and a decrease in the primary water operating flow will weaken this compensation effect. The heat exchange system in the steady-state test loop should be designed as a series-parallel switchable scheme to satisfy the wide range of power requirements. When the total flow of the primary water with inlet temperatures of 250 ℃ and 330 ℃ is 40%, the maximum heat exchange power of the two heat exchangers in series compared with the single operation will increase by 81% and 77%, respectively.

     

/

返回文章
返回