朱光昱, 郭勇, 元一单, 刘宇生, 李炜. 气泡微细化沸腾触发温度数值模拟研究[J]. 核科学与工程, 2021, 41(3): 639-643.
引用本文: 朱光昱, 郭勇, 元一单, 刘宇生, 李炜. 气泡微细化沸腾触发温度数值模拟研究[J]. 核科学与工程, 2021, 41(3): 639-643.
ZHU Guang-yu, GUO Yong, YUAN Yi-dan, LIU Yu-sheng, LI Wei. Simulation Study on Triggering Temperature of Microbubble Emission Boiling[J]. Chinese Journal of Nuclear Science and Engineering, 2021, 41(3): 639-643.
Citation: ZHU Guang-yu, GUO Yong, YUAN Yi-dan, LIU Yu-sheng, LI Wei. Simulation Study on Triggering Temperature of Microbubble Emission Boiling[J]. Chinese Journal of Nuclear Science and Engineering, 2021, 41(3): 639-643.

气泡微细化沸腾触发温度数值模拟研究

Simulation Study on Triggering Temperature of Microbubble Emission Boiling

  • 摘要: 气泡微细化沸腾(MEB)现象具有极高的换热能力,成功工程化应用后将极大提升核电厂中高热负荷设备的安全裕量。本文参照以往研究获得的可视化研究结果,采用Fluent建立相关模型,综合考虑气膜附近Marangoni对流、蒸发冷凝作用以及温度对物性参数的影响,结合数值模拟手段和沸腾不稳定性分析对MEB现象的发生机理进行了研究。结果表明,在不同过冷度下,汽液界面处的蒸汽平均流速随着壁温升高而增大。蒸汽平均流速达到该过冷度下Helmholtz失稳极限速度时对应的壁温与在实验获得的MEB触发壁温十分接近,说明Helmholtz失稳可能是导致MEB现象中气膜发生破裂的原因。

     

    Abstract: Due to its extremely high heat transfer capability,Microbubble Emission Boiling(MEB)is considered as the ideal means to promote heat exchanger in nuclear power plant.In this paper,the factor triggering MEB was studied by numerical work and boiling instability analysis.A numerical mode with the consideration of Marangoni stress,heat transfer on the vapor-liquid interface and the thermophysical property of test fluids was built based on the visualized study data.The results showed that,the average velocity near the vapor-liquid interface increases while the wall temperature increases.Furthermore,The wall temperature which the average vapor velocity equals to Helmholtz instability limiting speed is consistent with the temperature triggering MEB in the experiment.Thus,Helmholtz instability may be the reason for the collapsing of vapor film when MEB occurs.

     

/

返回文章
返回