Abstract:
In this paper, coconut-based activated carbon was used as the substrate to study the influence of impregnation agent TEDA content, KI content, air flow rate, and volume of activated carbon on the ignition point of activated carbon. In addition, the mathematical model was established by using the uniform design, and the ignition temperature of impregnation activated carbon was predicted and verified. The results show that the ignition point of activated carbon after TEDA is lower than the initial carbon. With the increase of TEDA content, the ignition temperature of activated carbon converges to 335°C. A small amount of KI can significantly reduce the ignition temperature of activated carbon, but with the increase of KI content. The ignition temperature is raised, but it is not higher than the initial activated carbon. The ignition temperature decreases as the air flow rate increase which through the activated carbon layer. And the ignition temperature decreases as the volume of activated carbon increase. The regression equation obtained by the uniformity design and has a high consistency with the actual measured value, and the equation can be used to predict the ignition point within a certain range.