何小锁, 王圣凯, 窦小敏, 路凯凯, 何庆华. 基于物理加密及KNN算法的核军控核查技术研究[J]. 核科学与工程, 2024, 44(3): 660-666.
引用本文: 何小锁, 王圣凯, 窦小敏, 路凯凯, 何庆华. 基于物理加密及KNN算法的核军控核查技术研究[J]. 核科学与工程, 2024, 44(3): 660-666.
HE Xiaosuo, WANG Shengkai, DOU Xiaomin, LU Kaikai, HE Qinghua. Study on Nuclear Arms Control Verification Technology Based on Physical Encryption and the K-Nearest Neighbor Algorithm[J]. Chinese Journal of Nuclear Science and Engineering, 2024, 44(3): 660-666.
Citation: HE Xiaosuo, WANG Shengkai, DOU Xiaomin, LU Kaikai, HE Qinghua. Study on Nuclear Arms Control Verification Technology Based on Physical Encryption and the K-Nearest Neighbor Algorithm[J]. Chinese Journal of Nuclear Science and Engineering, 2024, 44(3): 660-666.

基于物理加密及KNN算法的核军控核查技术研究

Study on Nuclear Arms Control Verification Technology Based on Physical Encryption and the K-Nearest Neighbor Algorithm

  • 摘要: 现阶段军控核查技术所面临的困难在于:核查人员需要在不探测敏感信息的前提下,对被检核武器的真实性给出准确结论。本工作结合物理掩模加密技术与K近邻算法,提出一种可自主加密识别核武器身份信息的核查系统。利用Geant4搭建基于中子裂变反应的物理加密辐射指纹采集装置,并通过构造多种作弊情景下的样本建立数据库,同时本研究选择KNN算法建立机器学习模型应用于未知项目的身份认证,并从鲁棒性和安全性两方面量化了该核查系统的可行性。结果表明,当样本同位素丰度由武器级铀变为较低级浓缩铀(235U的丰度由96%变为70%及以下)或者样本几何形状发生细微改变时,该系统对这两种典型的作弊情景具有优良的鉴别能力。该核查方法利用智能算法实现了核武器的自主认证,提高效率的同时有效规避了人工篡改和窥探敏感信息的风险,此外,结合物理掩模加密技术,使得敏感信息从始至终没被测量,在一定程度上降低了通过软件后门等手段作弊的风险。基于物理加密及K近邻算法的核军控核查技术能够在保护被测项目敏感信息的基础上,以较高的准确率和效率鉴定其真实性。

     

    Abstract: It is difficult for the current arms control verification technology to draw accurate conclusions about the authenticity of nuclear weapons without detecting sensitive information. By combining the physical mask encryption technology and the K-nearest neighbor algorithm, this work proposes a verification system that is capable of independently encrypting and identifying nuclear weapon identity information. A radiation fingerprint collection device based on neutron fission reaction is built using Geant4 and a database is constructed by building samples under a variety of cheating scenarios. Furthermore, this study employs a KNN algorithm for establishing a machine learning model for identifying unknown items, and measures the robustness and security of the verification system. The results show that when the sample isotopic abundance changes from weapons-grade uranium to lower-level enriched uranium(the abundance of 235U changes from 96% to 70% and below) or when the sample geometry changes slightly, the system provides excellent discrimination against these cheating scenarios. Using intelligent algorithms, the verification method facilitates independent certification of nuclear weapons, improving efficiency and reducing the risk of manual tampering and prying. Additionally, with physical mask encryption technology, sensitive information is not measured from the beginning to the end, reducing the risk of cheating through software backdoors and other means. On the basis of protecting the sensitive information of the inspected item, nuclear arms control verification technology based on physical encryption and the K-nearest neighbor algorithm will be able to identify its authenticity with high accuracy and efficiency.

     

/

返回文章
返回