一种基于边缘计算网络的网络流量测量方法

A Network Traffic Measurement Approach for Edge Computing Networks

  • 摘要: 边缘计算是5G网络中的关键技术之一,它可以在接入网上收集和处理数据并降低网络的传输负载。边缘计算网络软件定义网络(SDN)中的数据交换将传统交换机中的控制平面和转发平面解耦,并在全局视角下规划路由使网络管理更加灵活和高效、准确、全面的网络流量测量我们的方案使用基于SDN架构的粗粒度度量。通过在基于Open Flow的开关中收集统计量,并利用自回归移动平均(ARMA)模型来推断细粒度度量。为了减少估计误差,我们构造了一个目标函数来优化估计结果。然而,目标函数是一个NP困难的问题,然后我们提出使用一个启发式算法来获得优化结果。最后,我们进行了一系列的仿真来评估该方案的性能。仿真结果表明该方法是可行的,且测量成本较低是边缘计算网络流量管理的关键。最终,我们提出了一种新的SDN边缘计算网络流量测量方法。

     

    Abstract: Edge computing is one of the key technologies in 5G networks, it can collect and process data on the access network and decrease the transmission load of the network. The data exchange in the Edge computing network Software Defined Networking (SDN) decouples the control plane and forwarding plane in traditional switches and plans routing in the global view, making network management more flexible and efficient. The accurate and comprehensive network traffic measurement is the key to traffic management of edge computing network. Then, we propose a novel edge computing network traffic measurement approach to SDN. Our scheme uses the coarse-grained measurement based on SDN architecture by collecting statistics in Open Flow-based switch and utilize the autoregressive moving average (ARMA) model to infer the fine-grained measurement. In order to decrease the estimation error, we construct an objective function to optimize the estimation results. However, the objective function is an NP-hard problem, then we propose to use a heuristic algorithm to obtain the optimization results. Finally, we conduct a series of simulations to evaluate the performance of the proposed scheme. Simulation results show that our approach is feasible and has a low measurement cost.

     

/

返回文章
返回