基于预训练生成式模型的电力数据应用研究

Research on Electric Power Data Application with Generative Pre-trained Model

  • 摘要: 随着电力行业的不断发展,电力系统运维和服务人员对于电力数据分析工作产生了更高的需求,例如多模态数据分析、智能数据检索等。面对这些需求,传统的数据分析方法具有成本高、周期长、灵活性差等缺点。针对该问题,本文提出了一种基于预训练生成式模型的电力数据应用架构,该架构借助预训练生成式模型高效的语义理解和内容生成能力,能够让使用人员以自然语言的方式完成数据分析工作,提升数据分析工作的效率。特别地,本文提供了该应用架构的训练和测试流程,可以作为实践工作的参考。

     

    Abstract: With the development of electricity industry, power system operation and maintenance personnel generate more requirements for power data analysis, such as multi-modal data analysis and intelligent data retrieval. Traditional data analysis methods show the disadvantages of high cost, long cycle, and poor flexibility in the face of these requirements. To address this problem, this article proposes a framework of electric power data application with generative pre-trained model. This framework leverages the effective abilities of semantic understanding and content generation of generative pre-trained models, so as to allow users to implement data analysis in the form of natural language, thus improving the efficiency of data analysis. In particular, this article provides training and testing processes for the proposed application framework, which could serve as a reference for practice.

     

/

返回文章
返回